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Supervised Learning
• In the predictive or supervised learning approach, the goal is to learn
a mapping from inputs x to outputs y, given a labeled set of input-output
pairs D = {(xi, yi)}

N
i=1.

• Here D is called the training set, and N is the number of training ex-
amples.

• The form of the inputs can in principle be anything, but most methods
assume that xi is a fixed-length vector of features (also called attributesassume that xi is a fixed-length vector of features (also called attributes
or covariates), such as the height and weight of a person.

• Similarly the form of the output or response variable can in principle be
anything, but most methods assume that yi is a categorical or nominal
variable from some finite set, yi ∈ {1, . . . , C} (such as male or female), or
that yi is a real-valued scalar (such as income level).

• When yi is categorical, the problem is known as classification and when
yi is real-valued, the problem is known as regression.
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Probabilistic classification
• We first check the color of the object.

• If it is blue, we predict p(y = 1|x) = 4/4;

• if it is red, we then check the shape: if it is an ellipse, we predict p(y =
1|x) = 1/2, otherwise we predict p(y = 1|x) = 0/2;

• if it is some other colour, we check the size: if less than 10, we predict
p(y = 1|x) = 4/4, otherwise p(y = 1|x) = 0/5.

Yes=1No=0

p(y = 1|x) = 4/4, otherwise p(y = 1|x) = 0/5.



Probabilistic Classification
• With p(y|x,D), we explicitly denote that our probabilities are conditional
on the test input x, and the training set D, by putting these terms on the
right hand side of the conditioning bar |.

• We are also implicitly conditioning on the form of model that we use to
make predictions.

• When choosing between different models, we will make this assumption
explicit by writing p(y|x,D,M), where M denotes the model.explicit by writing p(y|x,D,M), where M denotes the model.

• Given a probabilistic output, we can always compute our “best guess” as
to the “true label” using

ŷ = f̂(x) = arg
C
max
c=1

p(y = c|x,D) (1)

• This corresponds to the most probable class label, and is called themode
of the distribution p(y|x,D); it is also known as aMAP estimate (MAP
stands for maximum a posteriori).



p(y = 0|x,D,K = 3) =
1

3

∑

i∈N3(x,D)

I(yi = 0)

p(y = 1|x,D, K = 3) =
1

3

∑

i∈N3(x,D)

I(yi = 1)



K-nearest neighbor classifier
• Another example of a simple classifier, which is arguably better-suited
to real-valued inputs than a decision tree, is the K nearest neighbor

(KNN) classifier. This simply “looks at” the K points in the training set
that are nearest to the test input x, counts how many members of each
class are in this set, and returns that empirical fraction as the estimate.
More formally,

p(y = c|x,D, K) =
1

K

∑
I(yi = c)p(y = c|x,D, K) =

K

∑

i∈NK(x,D)

I(yi = c)

where NK(x,D) are the (indices of the) K nearest points to x in D and
I(e) is the indicator function defined as follows:

I(e) =

{
1 if e is true
0 if e is false

This method is an example of memory-based learning or instance-
based learning.



K-nearest neighbor classifier
• If the features are real-valued, a standard way to measure distance between
two feature vectors is Euclidean distance,

d(x, x̃) = ||x− x̃||2 =

√√√√
D∑

j=1

(xj − x̃j)2

• When using Euclidean distance, we are assuming all the features have the• When using Euclidean distance, we are assuming all the features have the
same scale. Consequently it is common to first standardize the data,
which means ensuring it has zero mean and unit variance. We can do this
by computing

zij =
xij − xj
σj

where xj =
1
N

∑N

i=1 xij is the empirical mean of the j’th feature, and

σ2j =
1
N

∑N

i=1(xij − xj)
2 is the empirical variance.



K-nearest neighbor classifier

• If the features are discrete, a standard way to measure distance is Ham-
ming distance, defined as

d(x, x̃) =

D∑

j=1

I(xj �= x̃j)

which counts the number of features that differ between the two examples.

• If the features are both discrete and continuous, we can define a mixed
distance measure, such as

d(x, x̃) = I(x1 �= x̃1) + I(x2 �= x̃2) +
√
(x3 − x̃3)2

where x1 represents color, x2 represents shape, and x3 represents size.



K-nearest neighbor classifier

• We are free to associate weights with each dimension, if some features
are more important than others. We can do this by using the following
weighted distance metric:

d(x, x̃|w) =

D∑

j=1

wjdj(xj , x̃j)
∑

where dj is a distance measure appropriate for the attribute j. By setting
some weights to zero, we can ignore certain attributes when comparing
objects; this is known as feature selection.



K-nearest neighbor classifier



Parametric vs non-parametric

• A KNN classifier is an example of a non-parametric model, This does
not mean the model has “no parameters”, since it clearly does (namely
K, the parameters inside the distance metric, and all the training data).
Rather, “non-parametric” means (roughly speaking) that the number of
parameters can grow with the amount of training data.

• By contrast, many popular methods for classification are based on para-• By contrast, many popular methods for classification are based on para-
metric models, that have a number of parameters that is fixed ahead of
time. The data is then used to estimate these parameters; this is called
“learning” or “model fitting”.



What discriminant curve best 
separates these two classes?



Next day, we get more data and a 
surprise!



If the discriminant is a line, 
what is the best line?



Binomial and Bernoulli r.v.s
• Suppose we toss a coin n times. Let X ∈ {0, . . . , n} be the number of
heads. If the probability of heads is θ, then we say X has a Binomial
distribution, written as X ∼ Bin(n, θ). The pmf is given by

Bin(x|n, θ) :=

(
n
x

)
θx(1− θ)n−x, where

(
n
x

)
:=

n!

(n− x)!x!

• Since this is a pmf, we have 0 ≤ p(x|n, θ) ≤ 1 and
∑n

x=0 p(x|n, θ) = 1.
One can easily show that the mean of this distribution is E [X ] = nθ, and

• ≤ | ≤
∑

|
One can easily show that the mean of this distribution is E [X ] = nθ, and
the variance is var [X] = θ(1− θ).

• Let X ∈ {0, 1} be a binary random variable, with probability of “success”
or “heads” of θ. We say that X has Bernoulli distribution. This is
written as X ∼ Ber(θ), where the pmf is defined as

Ber(x|θ) = θI(x=1)(1− θ)I(x=0)

In other words,

Ber(x|θ) =

{
θ if x = 1
1− θ if x = 0



Logistic regression
• Logistic regression is a model that specifies the probability of the output
given the input as follows:

p(y|x,w) = Ber(y|sigm(wTx))

• The notation wTx refers to the scalar (inner) product

wTx = w0 +
D∑
wjxjw x = w0 +

∑

j=1

wjxj

x = (1, x1, . . . , xD). w0 is called an offset or bias term, and encodes the
baseline probability that y is on even if there are no other features.

• sigm(η) refers to the sigmoid function, also known as the logistic or
logit function, defined as

sigm(η) :=
1

1 + exp(−η)
=

eη

eη + 1



Logistic regression
•

p(yi = 1|xi,w) = sigm(w0 + w1xi)

xi is the “Scholastic Aptitude Test” (SAT) score of student i and yi is
whether they passed or failed a class. The solid black dots show the
training data, and the red circles plot p(y = 1|xi, ŵ), where ŵ are the
parameters estimated from the training data. See logregSATdemo.m



Logistic regression



Logistic regression - neuroscience
• One motivation comes from neuroscience. In the 1950s, McCulloch and
Pitts made a simple model of how a neuron works. They proposed that a
neuron forms a weighted sum of its inputs (coming in along its dendrites)
and then “fires” an output pulse (along its axon) if the weighed sum of
inputs exceed a threshold. That is, “fire” if p(y = 1|x) > p(y = 0|x).

• To see this, consider the log odds ratio, defined as follows:

p(y = 1|x,w)
LOR(x) := log

p(y = 1|x,w)

p(y = 0|x,w)

For a logistic regression model, the log odds ratio has the following form:

LOR(x) = log

[
eη

1 + eη
1 + eη

1

]
= log eη = η = wTx

So the neuron fires iff LOR(x) = w0 +
∑D

j=1 wjxj > 0



Logistic regression – categorical inputs
• The standard approach to handling categorical inputs is to re-code such
features using a 1-of-K vector, where K is the number of categories. This
is sometimes called a dummy variable, a factor, a 1-of-K encoding,
or a one-hot encoding (since only one “wire” is “hot” or “on” at a time).

• For example, x ∈ {r, g, b} can be encoded as a bit vector of length 3:

φ(x) = (I(x = r), I(x = g), I(x = b))I I I

so φ(g) = [0, 1, 0], etc. This maps {r, g, b} to {0, 1}3. We now use φ(xij)
instead of xij .



Logistic regression – decision boundary
• Logistic regression essentially partitions the input space into two regions:
those for which LOR(x) < 0 and those for which LOR(x) > 0.

• The point that separates these two regions is called the decision bound-
ary, i.e., the set {x : LOR(x) = 0}.

• In 1d, the decision boundary is a single point, where x∗ = −w0
w1
. The value

of w0/w1 determines the location of the threshold, and the magnitude
of w1 determines the “steepness” of the sigmoid function, that is, theof w1 determines the “steepness” of the sigmoid function, that is, the
sensitivity of the response to changes in x.



Logistic regression

• There is an easy way to make linear models represent non-linear functions,
called basis function expansion. The idea is that we replace the original
features x by some (fixed) non-linear function φ(x), and then use wTφ(x)
instead of wTx.

• A simple example of basis function expansion is to use a polynomial of
degree d:

φ(x) = [1, x1, x2, . . . , xd]

See logregBasisFnDemo.m



Logistic regression

• See logregXorDemo.m



Logistic regression
• Another kind of basis function expansion is based on radial basis func-
tions (RBF), which have the form

φ(x) = [κ(x,µ1), . . . , κ(x,µD′)]

where

κ(x,µk) = exp(−
1

2σ2
||µk − x||

2))

The µ are prototypes or exemplars, and σ2 is known as the bandwidth.The µk are prototypes or exemplars, and σ
2 is known as the bandwidth.

• The quantity κ(x,µk) ≥ 0 is called a kernel function; it measures the
similarity between x and µk, where similar objects are defined to be ones
that are close in Euclidean distance in the original feature space.

• Later, we discuss more general kinds of kernel functions, which allow us
to measure the similarity between structured objects such as strings (se-
quences of characters), trees, molecular structures, etc.



Multinomial distribution

• The multivariate version of a binomial is called a multinomial distribu-
tion. As an example, suppose we have a dice with K sides/ faces. Let the
probability that we roll face j be θj . Suppose we roll the dice n times in
total. Let x = (x1, . . . , xK) be a random vector, where xj is the number
of times face j occurs. Then x has the following pmf:

Mu(x|n,θ) :=

(
n

x1 . . . xK

) K∏

j=1

θ
xj
j , where

(
n

x1 . . . xK

)
:=

n!

x1!x2! · · ·xK !

and n =
∑K

k=1 xk.



Multinomial distribution
• Now suppose n = 1. This is like rolling a K-sided dice once, so x will
be a vector of 0s and 1s (a bit vector), in which only one bit can be
turned on. In this case, we can think of x as being a scalar categorical
random variable with K states (values), and x is its dummy encoding. For
example, if K = 3, we encode the states 1, 2 and 3 as (1, 0, 0), (0, 1, 0),
and (0, 0, 1). In this case, the pmf becomes

Mu(x|1,θ) =
K∏
θ
I(xj=1)Mu(x|1,θ) =

∏

j=1

θ
I(xj=1)
j

• This very common special case is known as a categorical or discrete
distribution. We will use the following notation for this case:

Cat(x|θ) := Mu(x|1,θ)

In otherwords, if x ∼ Cat(θ), then p(x = j|θ) = θj .



Multinomial Logistic regression
• In multiclass regression, we replace the logistic function η = sigm(wTx)
with η = S(WTx), where S is the softmax function, defined as follows:

S(η)c =
eηc

∑C

c′=1 e
ηc′

We use the non-standard notation S(η) to denote the C × 1 vector of
probabilities, and S(η)c to denote the c’th component.probabilities, and S(η)c to denote the c’th component.

• The overall model becomes

p(y|x,W) = Cat(y|S(WTx))

whereW is a D × C weight matrix, with one column per class.

• This is called multinomial logistic regression, or the multinomial
logit model.



Multinomial Logistic regression
• The softmax function is so-called since it acts a bit like the max function.
To see this, let us divide each ηc by a constant T called the temperature.
Then as T → 0, we find

S(η/T )c =

{
1.0 if c = argmaxc′ ηc′

0.0 otherwise

• We can arbitrarily define wc = 0 for one of the classes, say c = C, since∑C−1
•
p(y = C|x,w) = 1−

∑C−1
c=1 p(y = c|x,w). In this case, the model has the

form

p(y = c|x,W) =
exp(wc0 +w

T
c x)

1 +
∑C−1

k=1 exp(wk0 +w
T
k x)

In general, if we have C classes, we only need to specify C − 1 vectors
wc. If we don’t “clamp” one of the vectors to some constant value, the
parameters will be unidentifiable.



Multinomial Logistic regression

• See logregMultinomKernelDemo.m



Text classification
• In document classification, the goal is to classify a document, such as
a web page or email message, into one of C classes, that is, to compute
p(y = c|x,D), where x is some representation of the text. A special case
of this is email spam filtering, where the classes are spam y = 1 or
ham y = 0.

• A common way to represent variable-length documents in feature-vector
format is to use a bag of words representation. For example, consider
the following fragment of a famous nursery rhyme:the following fragment of a famous nursery rhyme:

Mary had a little lamb,

little lamb, little lamb,

Mary had a little lamb,

whose fleece was white as snow.



Face detection
• Divide the image into many small overlapping patches at different lo-
cations, scales and orientations, and classify each such patch based on
whether it contains face-like texture or not. This is called a sliding win-
dow detector.



Structured classification
• In some problems, we need to predict multiple related response variables,
i.e., we need to compute p(y|x,D), where y ∈ Y , and Y = Y1×Y2 · · · YT ,
where T is the output dimensionality.

• Another example concerns part of speech tagging. This is the task
of determining if each word in a sentence is a noun, verb, adjective, etc.
Locally this can be ambiguous, but again context can help. For example,
the word “hit” could be a noun or a verb, but in the sentence “Bob hit
the ball”, it is obviously a verb, whereas in the sentence “The movie was
a hit”, it is obviously a noun.
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