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K-means algorithm

1. Initialisation: Choose & = 2 means 1.0 at random.

2.

. Assign data to nearest mean: 1o keep tre

Compute distances: For ¢ = 1,....k and ¢ =

: P
1,...,n compute the distance ||x; — p.||".

assignments, introduce the indicator variable

Y,
that T" (2) \oo
-C -
r
L if e =argmin ||z, — f|]
:[[(i(/::-i) — < !
0 otherwise
\.
That 1s, IL,(z;) = 1 if observation x; is closer to cluster

2. I.(z) end up being the entries of an 1 x A matrix

with only one 1 per row and many zeros.



K-means algorithm (continued)
erc(?;) - #?a‘.wk \n

{ Clusler ¢
4. Update means:

[l = > iy Le(zi)x;
| Zi;l H(-(Z,r_)

5. Repeat: Go back to step 2. until the means and as-

signments stop changing.



Hard Vs Soft assignments

The problem with this algorithm is that the assignments are
hard. Something is either this or that. Sometimes, however,
we would like to say that something 1s this with probability

0.7 or that with probability 0.3.

We would like to find not only the means, but also the vari-
ances of each cluster and the probabilities of belonging to

each cluster.
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K=3 is the number of clusters, here chosen by hand
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Probabilistic approach

For the 2 clusters, we approximate the probability of each

data point with a weighted combination of (Gaussians

Mmixfure . C(“‘.‘e‘1 : C(wsl—e( 1 ,
plail o, 019) = p(z; = DN (x| ey, 07)+p( 2 = 2)N (24| pta, 03)

Here, the taknown parameters are (fi1.9. szg) and the cluster

probabilities p{z; = 1) and p(z, = 2), which we rewrite as

p(1) and p(2) for brevity. Note that p(1)+p(Z=l to ensure

that we still have a probability.
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Probabilistic approach

In general, we have

Jl't.

plalf) = ple)N(x|p.. o])

c=1

n) \ .
where 6 = (ft1.., 01..) summarises the model parameters and

p(c) = p(z; = ¢). Clearly, Zle plc) =1



The EM algorithm

In this section, we use intuition to imtroduce the expectation-

maximisation (EM). If we know [I.(z;). then it is easy to

compute (., o) by maximum likelihood. We repeat this

for each cluster. The problem is that we have a chicken and
ege situation. To know the cluster memberships, we need
the parameters of the Gaussians. To know the parameters.

we need the cluster memberships.

Onmne solution is to approximate [.(z;) with our expectation of
it given the data and our current estimate of the parameters

A. That is, we replace T.(z;) with
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The EM algorithm

Once we know &;.. we can compute the Gaussian mixture

paralne ters:
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The EM algorithm

The EM for Gaussians is as follows:
1. Initialise.

2. E Step: At iteration ¢, compute the expectation of the
indicators for each 7 and ¢:
o plo) DN (x; \Hﬁ” Dy )
Zi}zl p()ON (24 p..fj) _._ Zifj) )

e\
Sic

and normalise it (divide by sum over ¢).

3. M Step: Update the parameters p(c)'"), p..f._”, n
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Trandation and data association

“sun sea sky”

“sun sea sky”
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