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History of the Monte Carlo method



History of the Monte Carlo method:
The bomb and ENIAC



History of the Monte Carlo method



Integrals in Probabilistic Inference



Monte Carlo Integration
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Monte Carlo Integration

Cannot sample 
Directly from Directly from 

p(x|data)



Monte Carlo Integration Formally
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Optimisation: 
Concentrate Samples on Modes
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Normalized Importance Sampling
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Sampling-Importance Sampling (SIR)
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What is the best proposal?
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Dynamic models and particle filteringDynamic models and particle filtering
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Non-linear non-Gaussian filtering

y

Nasty integral



Importance Sampling for 
Optimal Filtering / Tracking

Importance Sampling for 
Optimal Filtering / Tracking



One can Compute the Integrals 
Recursively in Time

One can Compute the Integrals 
Recursively in Time

Given the samples from



Particle Filtering (SIS)Particle Filtering (SIS)
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Particle Filtering CodeParticle Filtering Code



Particle Filtering ExampleParticle Filtering Example
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Particle Methods More Generally Particle Methods More Generally 
The goal is to approximate a target distribution over a 
sequence of states                                            that is 
growing with “time” as well as the partition function.

We do this using sequential importance sampling (M&U, 49)

e.g. For filtering, we use:



Particle FilteringParticle Filtering



Using Clever Proposals: e.g. BoostingUsing Clever Proposals: e.g. Boosting



Autonomous robots and self-diagnosis

X1 X2 X3

Unknown continuous signals

z1 z2 z3

Unknown internal discrete state

Y1 Y3Y2

Sensor readings



Rao-Blackwellised Particle FilteringRao-Blackwellised Particle Filtering
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Naïve solution with PFNaïve solution with PF



RBPF: The conditioning argumentRBPF: The conditioning argument



RBPF: Do it Analytically if you Can!RBPF: Do it Analytically if you Can!
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RBPF AlgorithmRBPF Algorithm



RBPF for Hybrid Control with PIDsRBPF for Hybrid Control with PIDs



RBPF Real-time diagnosisRBPF Real-time diagnosis

Given samples of z, 
we can solve for x 
exactly with a 
mixture of Kalman 
filters.



Beyond Filtering Beyond Filtering 
Filtering:

Smoothing:

Viterbi:

Filtering is O(N), 
but smoothing and 
Viterbi are O(N  )2

Solution: Fast multipole methods(Greengard and Rohklin), dual 
metric trees (Gray and Moore) and Huttenlocher’s tricks – no FFT.
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MCMC: Metropolis-Hastings
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MCMC: Choosing the Right Proposal



MCMC: Theory
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MCMC: MH Annealed
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Extending MH to directed probabilistic 
graphical models
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Gibbs Sampling
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Gibbs Sampling For Graphical models



Deep learning (Hinton and collaborators)



Encoding digits
(A) The two-dimensional codes for 500 digits of each class produced by takingthe first
two principal components of all 60,000 training images.
(B) The two-dimensional codes found by a784-1000-500-250-2autoencoder.

These 2-dimensional embeddings of images of digits enable us to 
make predictions (classification)



Layer 1

Layer 2

Layer 3

[Honglak Lee et al 2009]



In the binary case where v ∈ {0, 1}D and h ∈ {0, 1}K the energy
function can be expressed as:

E(v, h,W ) = −
D∑

i=1

K∑

j=1

viWijhj −
D∑

i=1

vibi −
K∑

j=1

hjbj.

The probabilities of each node can be easily obtained.

p(v = 1|h,W ) = sigmoid




K∑
W h + b


p(vi = 1|h,W ) = sigmoid


∑

j=1

Wijhj + bi




p(hj = 1|v,W ) = sigmoid

(
D∑

i=1

Wijvi + bj

)
,

where sigmoid(a) = 1
1+exp(−a)

. The model is therefore easy to sam-

ple: One simply flips K coins for the hidden units and D coins for
the visible units.



1. Sample hidden units h̃n from p(h|vn,W
(t)).

2. Sample imaginary data ṽn from p(v|h̃n,W
(t)).

3. Sample hidden units again
˜̃
hn from p(h|ṽn,W

(t)).

Contrastive divergence learning

˜̃
|˜

4. Update the parameters:

W
(t+1)
dk = W

(t)
dk + η(t)

[
1

N

N∑

n=1

vdnh̃kn −
1

N

N∑

n=1

ṽdn
˜̃
hkn

]

5. Increase t to t+ 1 and go to step 2.



MH is a Building Block
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Trans-Dimensional MCMC and the Reversible 
Jump Algorithm of Peter Green: Use a mixture 

of dimension jumping algorithms



Must be Careful with Measures !
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Collapsing and Blocking



Auxiliary Variable Samplers



Hybrid Monte Carlo



Hybrid Monte Carlo
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The EM algorithmThe EM algorithmThe EM algorithmThe EM algorithm


