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Markov Properties
• UGMs define Conditional Independence (CI) relationships via simple graph
separation as follows: for sets of nodes A, B, and C, we say xA ⊥G xB |xC
iff C separates A from B in the graph G.

• This means that, when we remove all the nodes in C, if there are no paths
connecting any node in A to any node in B, then the CI property holds.

• This is called the global Markov property for UGMs.•

• The local Markov property, states that a node is independent of all
the rest given its neighbors or, more formally,

t ⊥ V \ cl(t)|mb(t)

where V = {1, . . . , D} is the set of all the nodes, mb(t) is the Markov
blanket of node t, and cl(t) = mb(t) ∪ {t} is the closure of node t.

• In the case of a UGM, the Markov blanket of a node in a UGM is just the
node’s neighbors: mb(t) = nbr(t).



Conditional independence



Directed or Undirected



DAG to undirected via moralization



Hammersley-Clifford Theorem
• A clique is a set of nodes which are all fully connected to each other. A
maximal clique is one which cannot be made larger without losing the
clique property.

• A potential function or factor associated with the variables in clique
c, ψc(xc|θc), is an arbitrary non-negative function of its arguments, i.e.,
ψc(xc|θc) ≥ 0 for all xc.

Theorem 0.1 (Hammersley-Clifford). A positive distribution p(x) >
0 satisfies the Markov properties of an undirected graph G iff p can be
represented as a product of factors, one per maximal clique, i.e.,

p(x|θ) =
1

Z(θ)

∏

c∈C

ψc(xc|θc)

where C is the set of all the (maximal) cliques of G, and Z(θ) is the
partition function given by

Z(θ) :=
∑

x

∏

c∈C

ψc(xc|θc)



Example
•

p(x|θ) =
1

Z(θ)
ψ124(x124)ψ234(x234)

• If the variables are discrete, we can represent the potential functions as
tables of (non-negative) numbers, just as we did with CPTs. However,
the potentials are not probabilities. Rather, they represent the relative
“compatibility” between the different assignments to the potential.



Energy-based models
• A common way to ensure potentials are positive is to define

ψc(xc|θc) = exp(−E(xc|θc))

where E(xc) ∈ R is called an energy.

• The resulting joint distribution can then be written as a Gibbs distri-
bution

1 ∑
p(x|θ) =

1

Z(θ)
exp(−

∑

c

E(xc|θc))

• We see that high probability states correspond to low energy configura-
tions. Models of this form are known as energy based models.

• If the energy is a linear function of the parameters, E(xc|θc) = φc(xc)
Tθc,

where φc(xc) is a feature vector derived from the values of the variables
xc, then the model is known as amaximum entropy (maxent) model.



Example: Binary RBMs
• A binary RBM with D visible variables xs and L hidden variables ht can
be defined as follows:

p(x,h|θ) =
1

Z(θ)
exp(−E(x,h|θ))

E(x,h|θ) := −

D∑

s=1

L∑

t=1

xswstht −

D∑

s=1

xsbs −

K∑

t=1

htct

= −(xTWh+ xTb+ hT c)= −(xTWh+ xTb+ hT c)

where E is the energy function, W is a D × L weight matrix, b are the
visible bias terms, c are the hidden bias terms, and θ = (W,b, c) are all
the parameters. (We can absorb the bias terms into the weight matrix
by clamping dummy units x0 = 1 and h0 = 1 and setting w0,t = ct and
ws,0 = bs.)



Binary RBMs and deep nets



Binary RBMs
• The principal advantage of the RBM over general Boltzmann machines is
that one can perform efficient inference of the hidden states.

• In particular, we can compute the posterior over the hidden variables in
parallel as follows:

p(h|x, θ) =
L∏

t=1

p(ht|x,θ)|
∏

t=1

|

p(ht = 1|x,θ) = sigm(wT
:,tx+ ct)

• By symmetry, one can show that we can generate data given the hidden
variables as follows:

p(xs = 1|h,θ) = sigm(w
T
s,:h+ bs)





Pairwise MRFs•

p(x|θ) =
1

Z(θ)

∏

s∈V

ψs(xs|θs)
∏

(s,t)∈E

ψs,t(xs, xt|θst)

where V are the nodes and E are the edges. This is known as a pairwise
MRF.

• Frequently we represent the potential functions as 1d vectors and 2d arrays
of numbers:of numbers:

ψs(xs) = e
θs(xs), ψst(xs, xt) = e

θst(xs,xt)

from which we get

log p(x|θ) =
∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)− logZ(θ)

This is called the standard overcomplete representation. It is called
“overcomplete” because it contains more parameters than are strictly nec-
essary.



MRFs





Factor graphs
• When defining UGMs, there can be ambiguity about whether we assume
that there is one potential function per clique or if the potential functions
are only defined on subsets of nodes in a clique, such as just on the edges.

• In the example below: if we assume one potential per maximal clique we
get

p(x1:4) =
1

Z
ψ124(x124)ψ234(x234)1:4

Z
124 124 234 234

But if we assume one potential per edge, we get

p(x1:4) =
1

Z
ψ12(x12)ψ14(x14)ψ23(x23)ψ24(x24)ψ34(x34)



Gaussian graphical models•

p(x|θ) ∝
∏

s∼t

ψst(xs, xt)
∏

t

φt(xt)

ψst(xs, xt) = exp(−
1

2
xsΛstxt)

φt(xt) = exp(−
1

2
Λttx

2
t + ηtxt)

The joint distribution can be written as follows:

p(x|θ) ∝ exp[ηTx−
1

2
xTΛx]

We recognize this as a multivariate Gaussian in information form, where
Σ = Λ−1 and µ = Λ−1η. Hence this is called a Gaussian MRF, also
known as a Gaussian graphical model or GGM.

• If Λst = 0 , then there is no pairwise term connecting s and t, so by the
factorization theorem, we conclude that

xs ⊥ xt|x−(st) ⇐⇒ Λst = 0



Hopfield networks

• A Hopfield network is just another name for an Ising model.

• What makes these models different from the physics case is that a Hopfield
network is usually fully connected, so all the entries of wst are free, modulo
the symmetry constraintW =WT .

• Also, the weights wst are learned from training data using (approximate)
maximum likelihood, rather than being set based on some physical prin-

•
maximum likelihood, rather than being set based on some physical prin-
ciple.



Hopfield networks
• One application for Hopfield models is pattern completion. Below, the
network has been trained on 7 binary images. At test time, a partially ob-
served image is presented, and inference imputes the missing components.
This can be thought of as retrieving an example from memory based on
the example itself; this is known as an associative memory.



Conditional random fields (CRFs)

• UGMs/MRFs define unconditional joint probability distributions, p(x|θ).
We can define conditional joint distributions, p(y|x, θ) too:

p(y|x,θ) =
1

Z(x,θ)

∏

c

ψc(yc|x, θ)

This is called a conditional random field or CRF (or sometimes aThis is called a conditional random field or CRF (or sometimes a
discriminative random field).

• CRFs can be used to solve structured output classification problems.



Conditional random fields (CRFs)

• With a CRF, we don’t “waste resources” modeling things that we always
observe (e.g., the image or the words). Instead we can focus our attention
on modeling what we care about, namely the distribution of labels given
the data.

• Another important advantage of CRFs is that we can make the potentials
(or factors) of the model be data-dependendent.

• e.g., in natural language processing (NLP) problems, such as POS tagging,
we can make the POS tags depend on global properties of the sentence,
such as which language it is written in. It is hard to incorporate global
features into generative models, since they will not be independent of the
local features.

• The disadvantage of CRFs over MRFs is that they require labeled training
data,



Noun phrase chunking
• One common NLP task is noun phrase chunking, which refers to the
task of segmenting a sentence into its distinct noun phrases (NPs). This
is a simple example of a technique known as shallow parsing.

• In more detail, we tag each word in the sentence with B (meaning begin-
ning of a new NP), I (meaning inside a NP), or O (meaning outside an
NP). This is called BIO notation. For example, in the following sentence,
the NPs are marked with brackets:

B I O O O B I O B I I

(British Airways) rose after announcing (its withdrawal) from (the UAI deal)

(We need the B symbol so that we can distinguish I I, meaning two words
within a single NP, from B B, meaning two separate NPs.)



Noun phrase chunking
• In the CRF, the connections between adjacent labels encode the prob-
ability of transitioning between the B, I and O states, and can enforce
constraints such as the fact that B must preceed I.

• The features are usually hand engineered and include things like: is the
POS tag for this word “noun”, does this word begin with a capital letter, is
this word followed by a full stop, etc. Typically there are ∼ 1, 000−10, 000
features per node.



CRFs for entity extraction



CRFs for computational biology
• An interesting analog to the skip-chain model arises in the problem of
predicting the structure of protein side chains. Each residue in the side
chain has 4 dihedral angles, which are usually discretized into 3 values
called rotamers. The goal is to predict this discrete sequence of angles, y,
from the discrete sequence of amino acids, x.

• We can define an energy function E(x,y), where we include various pair-
wise interaction terms between nearby residues (elements of the y vector).
This energy is usually defined as a weighted sum of individual energy
terms, E(x,y|θ) =

∑D

j=1 θkEj(x,y), where the Ej are energy contribu-
tion due to various electrostatic charges, hydrogen bonding potentials, etc,
and θ are the parameters of the model.

• Given the model, we can compute the most probable side chain configu-
ration using y∗ = argminE(x,y|θ).
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