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“tufa”

“tufa”tufa

Can you pick out the tufas? 

Josh Tenenbaum



Why Machine learning

• Find patterns in data
M k di ti• Make predictions

• Make decisions
• All at the same time• All at the same time

• Understand cognitiong
• Deal with the data deluge 
• Build useful products, e.g. autonomous cars/robots, 
environmental anomaly detection, …



Big data



~100, 000,000,000 neurons and ~60,000, 000,000,000 synapses
Wikipedia
Human brain

Current revisions only uncompressed ~112 GB (896,000,000,000 bits)



Big data: Surveying the universeBig data: Surveying the universe
“When the  Sloan Digital Sky 
Survey started work in 2000, its 
telescope in New Mexico collected

“When the  Sloan Digital Sky 
Survey started work in 2000, its 
telescope in New Mexico collectedtelescope in New Mexico collected 
more data in its first few weeks than 
had been amassed in the entire 
history of astronomy. 

telescope in New Mexico collected 
more data in its first few weeks than 
had been amassed in the entire 
history of astronomy. y y

Now, a decade later, its archive 
contains a whopping 140 terabytes 

y y

Now, a decade later, its archive 
contains a whopping 140 terabytes 

A successor, the Large Synoptic 
S T l d
A successor, the Large Synoptic 
S T l d

of information. of information. 

Survey Telescope, due to come on 
stream in Chile in 2016, will acquire 
that quantity of data every five 
days ”

Survey Telescope, due to come on 
stream in Chile in 2016, will acquire 
that quantity of data every five 
days ”days.days.

[The Economist, February 2010]



Big data: Financial marketsBig data: Financial markets

• Skyrocketing data volumes:  1.5 million messages/sec and growing
• About 70% of volume in US equity markets submitted electronically

“A 1-millisecond advantage in trading applications can be 
worth $100 million a year to a major brokerage.”wo th $ 00 million a yea to a majo b oke age.

-- The TABB Group

Courtesy of Alan Wagner, UBC



Big data: MedicineBig data: Medicine
National Digital Mammography Archive: a system designed toNational Digital Mammography Archive: a system designed to 
include a database growing by 28 PB per year according to 
IBM sources.sou ces.



• Library of Congress text database of ~20 TB

illi h ll d• AT&T 323 TB, 1.9 trillion phone call records.

• World of Warcraft utilizes 1.3 PB of storage to g
maintain its game.

• Avatar movie reported to have taken over 1 PB of• Avatar movie reported to have taken over 1 PB of 
local storage at Weta Digital for the rendering of the 
3D CGI effects.

• Google processes ~24 PB of data per day.

• YouTube: 24 hours of video uploaded every 
minute. More video is uploaded in 60 days than all 
3 major US networks created in 60 years According3 major US networks created in 60 years. According 
to cisco, internet video will generate over 18 EB of 
traffic per month in 2013.



ML opportunitiesML opportunities
B iBusiness

Mining correlations, trends, spatio-temporal predictions.
Efficient supply chain management.
Opinion mining and sentiment analysis.
Recommender systems.
…

Corporate Earnings 
Announcements

PeopleMarket Data

Sentiment &
News

Sentiment & 
Macro Indicators

Alan Wagner, UBC



ML opportunitiesML opportunities

Science
Astronomy
Biology
Medicine
Ecology
Brain Science
…

Safety
Crime statsCrime stats
Emergency response
…

Government and institutional accountability



Big data: text
“Large” text dataset:

• 1 000 000 words in 1967

Success stories:

• 1,000,000                words in 1967
• 1,000,000,000,000  words in 2006

Success stories:

• Speech recognition
• Machine translation

What is the common thing that makes both of these work well?What is the common thing that makes both of these work well?

• Lots of labeled data
i i i i• Memorization is a good policy

[Halevy, Norvig & Pereira, 2009]



Statistical machine translation

I love you I love chocolate I amy I am

Yo te amo Yo amo el chocolate Yo soy

1 Get many sentence pairs easy1. Get many sentence pairs – easy.
2. Compute correspondences
3. Compute translation table: P(Spanish|English)3. Co pute t a s at o tab e: (Spanish| nglish)
4. Repeat steps 2 and 3 till convergence



Statistical machine translation

“Gorgeous red seaGorgeous red sea, 
sun and sky”

sun sea sky

sun   sea   sky





Scene completion: more data is better

Given an input image with a missing region, 
Efros uses matching scenes from a large 
collection of photographs to complete the image

[Efros, 2008]



The semantic challenge
“We’ve already solved the sociological problem of building a network 
infrastructure that has encouraged hundreds of millions of authors to 
h illi fshare a trillion pages of content. 

We’ve solved the technological problem of aggregatingg p gg g g
and indexing all this content.

But we’re left with a scientific problem of interpreting the content”But we re left with a scientific problem of interpreting the content

Probability (  fact given evidence ) = ?

[Halevy, Norvig & Pereira, 2009]



Approximation, stats and optimizationApproximation, stats and optimization

[Murphy, 2010]





Topographic maps



“the x and y coordinates correspond to the spatial location of a rat whichthe x and y coordinates correspond to the spatial location of a rat, which 
is running around freely inside a large box. The black lines in the left 
figure shows how this particular rat explored the box in a fairly 
haphazard manner. However, an electrode inserted in the rat’s subcortex 
picks up a signal that is anything but chaotic: the responses of said 
neuron are given as red dots in the left figure, while the right figure gives 
the firing rate distribution (ranging from blue for silent and red for the 
peak rate of responding). Although the rat is running about randomly,peak rate of responding). Although the rat is running about randomly, 
this neuron is responding in a grid, seemingly coming on an off in 
response to the animal’s spatial location.”

[Hafting et al 2005]



Associative memory

Example 2: Say the alphabet, …. backward 

[Jain, Mao & Mohiuddin, 1996]



McCulloch-Pitts model of a neuron



Complexity



Re-visiting logic, NP and 2-SAT
Consider the CNF expression S = C1 ∧ ∧ C where each clause Ci is aConsider the CNF expression S = C1 ∧ . . . ∧ Cm, where each clause Ci is a

disjunction of literals xi,1 ∨ . . .∨ xi,ki defined on propositional variables. When
each clause has two parents at most, the problem is known as 2-SAT.

Parrot =⇒ Bird ¬P ∨B
Bird =⇒ Flies ¬B ∨ FEBP F H

F lies =⇒ Escapes ¬F ∨E
Flies =⇒ HasWings ¬F ∨H

C2 C3 C4C1 2 3 41

S



Re-visiting logic, NP and 2-SAT
P t Bi d P ∨BParrot =⇒ Bird ¬P ∨B
Bird =⇒ Flies ¬B ∨ F
F lies =⇒ Escapes ¬F ∨E

EBP F H

F lies =⇒ HasWings ¬F ∨H
C2 C3 C4C1

S

1. Verification: Does (P=1,B=1,F=1,E=1,H=1), i.e. (11111), satisfy this 2-SAT problem?

2. Verification: Does (10111) satisfy it?

3. Maximization: What is the maximum number of clauses that can be satisfied?

4. What is the number of possible assignments to (PBFEH)?

5. Counting: How many assignments satisfy this 2-SAT example?



Logic, NP, 2-SAT and Monte Carlo

EBP F H

C2 C3 C4C1

S

Counting: How many assignments satisfy this 2-SAT example
Approximate answer: Use the Monte Carlo Method.pp

i. Sample P, B, F, E and H by flipping a coin for each variable N times.
ii. For each sample of (PBFEH), check for satisfiability.
iii. The probability of satisfiability, P(S=1), is approximated as the 

number of satisfying samples divided by N.
iv. The expected number number of satisfiable samples n = P(S=1) 25.  



From max-2-SAT to Energy

EBP F H
¬P ∨B −→
¬B ∨ F −→
¬F ∨ E −→

C2 C3 C4C1
¬F ∨H −→

Introduce the notation
P = X1, B = X2, F = X3, E = X4, H = X5.

S

1, 2, 3, 4, 5

The total energy of the system is:

Assume some clauses are harder to 
satisfy than others Introduce asatisfy than others. Introduce a 
weight (θ) to measure this.
To obtain the Energy of the system of 
bi i bl X f d

B

P F
binary variables, use X for a negated 
propositional variable and 1-X 
otherwise. Then sum over all clauses. E H

Ising 
model



From max-2-SAT to Energy

B

E = θ1P + θ2B + (θ3 + θ4)F − θ1PB − θ2BF − θ3FE − θ4FH
Let P = x1, B = x2, F = x3, E = x4 and H = x5

E

B

P F

H

The energy can be written as:

5 5 E H
E = −

X
i=1

bixi −
X
i=1

X
j>i

xiwijxj

In our case:



From max-2-SAT to Energy to Probability
Let us look at the energy of a few configurations assuming all the θi = 1Let us look at the energy of a few configurations, assuming all the θi = 1.
In this case the energy is simply:

E(x1, x2, . . . , x5) = x1 + x2 + 2x3 − x1x2 − x2x3 − x3x4 − x3x5

What is the lowest energy? When is it attained?
What is the maximum energy?
What should the most probable configuration be?

Boltzmann distribution



Ising models and the 2nd law of thermodynamics

The Ising model describes many physical phenomena:

“The Ising model can be reinterpreted as a statistical model for the 
motion of atoms A coarse model is to make space time a lattice andmotion of atoms. A coarse model is to make space-time a lattice and 
imagine that each position either contains an atom or it doesn’t.”
Wikipedia Ising Model page.

“The original motivation for the model was the phenomenon of 
magnetism.”

Second law of thermodynamics and stabilitySecond law of thermodynamics and stability.



On information and energy – Maxwell’s Demon
In this thought experiment “an imaginary container is divided into two parts byIn this thought experiment, an imaginary container is divided into two parts by 
an insulated wall, with a door that can be opened and closed by what came to 
be called “Maxwell’s Demon”. The hypothetical demon is only able to let the 
“hot” molecules of gas flow through to a favored side of the chamber, causing 

”that side to appear to spontaneously heat up while the other side cools down.”

Does this violate the 2nd law?

What is the relation of information and energy?gy



Restricted Boltzmann Machines

Hidden variables (features)H1 H3H2

Weighted connections form images

Visible (e.g. 4‐pixel image)V1 V4V2 V3

A joint configuration (v,h) of the binary visible and hidden units has an energy
given by the following RBM model:

E(v,h) = −
X

i∈pixels
bivi −

X
j∈features

bjhj −
X
i,j

viwijhj

And hence a Boltzmann probability:

p(v,h) =
1

Z
e−E(v,h)



Distributed representation

1 10 0 0Feature vector

Hidden units

LearnedLearned
weights

4x4 image patch

Insight: We’re assuming edges occur often in nature, but dots don’t
We learn the regular structures in the world



1 10 0 0Feature vector …

Hidden units

image patch



Deep learning (Hinton and collaborators)



Encoding digits
(A) The two-dimensional codes for 500 digits of each class produced by taking the first(A) The two dimensional codes for 500 digits of each class produced by taking the first
two principal components of all 60,000 training images.
(B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder.

These 2-dimensional embeddings of images of digits 
enable us to make predictions (classification)



Layer 1

Completing scenesCompleting scenes

Layer 2Layer 2

Layer 3y

[Honglak Lee et al 2009]



In the binary case where v ∈ {0, 1}D and h ∈ {0, 1}K the energy
function can be expressed as:function can be expressed as:

E(v, h,W ) = −
DX KX

viWijhj −
DX
vibi −

KX
hjbj.( , , )

X
i=1

X
j=1

j j

X
i=1

X
j=1

j j

The probabilities of each node can be easily obtained.

p(vi = 1|h,W ) = sigmoid
⎛⎝ KX
j=1

Wijhj + bi

⎞⎠⎝
j 1

⎠

p(hj = 1|v,W ) = sigmoid
Ã
DX
Wijvi + bj

!
,

Ã
i=1

!

where sigmoid(a) = 1
1+exp(−a) . The model is therefore easy to sam-

ple: One simply flips K coins for the hidden units and D coins forple: One simply flips K coins for the hidden units and D coins for
the visible units.



Contrastive divergence learning

1. Sample hidden units fhn from p(h|vn,W (t)).

2. Sample imaginary data fvn from p(v|fhn,W (t)).

f
3. Sample hidden units again fhn from p(h|fvn,W (t)).

4. Update the parameters:p p

W
(t+1)
dk =W

(t)
dk + η(t)

"
1

N

NX
vdnghkn − 1

N

NXgvdngghkn
#

dk dk η

"
N

X
n=1 N

X
n=1

#

5. Increase t to t+ 1 and go to step 2.g p



Hierarchical spatio-temporal feature learning

t=0:4
Temporal pooling RBM

t 2 4

Spatial pooling RBM

t 0 2 t=2:4

Temporal pooling RBM

t=0:2

Spatial pooling RBM

t=0 t=3 t=4t=2t=1



Hierarchical spatio-temporal feature learning

Observed gaze sequence

Model predictionsModel predictions



Change blindness



People as Bayesian reasoners



Theory • Species organized in taxonomic tree structure
• Feature i generated by mutation process with rate λig y p i

F8

F9

p(S|T)

Domain
Structure

F1 F2F3 F4 F5

F6

F7

F8

F10

F11

F12

F13

F14

F14

S3 S4 S1 S2 S9 S10 S5 S6 S7 S8
F10 F10

p(D|S)
Species 1
Species 2
Species 3
Species 4
Species 5Species 5
Species 6
Species 7
Species 8
Species 9
S i 10

Data

Species 10

Josh Tenenbaum



Theory • Species organized in taxonomic tree structure
• Feature i generated by mutation process with rate λig y p i
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Josh Tenenbaum



Theory • Species organized in taxonomic tree structure
• Feature i generated by mutation process with rate λig y p i

F8

F9

p(S|T)

Domain
Structure
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Josh Tenenbaum



T1:
• Species organized in       

T0:
• No organizational structure p g

taxonomic tree structure.
• Features distributed via 

stochastic mutation process.

g
for species. 

• Features distributed 
independently over species.
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Features Josh Tenenbaum



T1:  p(Data|T1) ~ 2.42 x 10-32

• Species organized in       
T0:  p(Data|T0) ~ 1.83 x 10-41

• No organizational structure p g
taxonomic tree structure.

• Features distributed via 
stochastic mutation process.

g
for species. 

• Features distributed 
independently over species.
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(Chater & Manning, 2006)



“Universal Grammar” Hierarchical phrase structure 
grammars (e.g., CFG, HPSG, TAG)

P(grammar | UG)

VNPRelRelClause
RelClauseNounAdjDetNP

VPNPS

→
→
→

][
][][

Grammar
P(grammar | UG)

VerbVP
NPVPVP

VNPRelRelClause

→
→
→ ][

P(phrase structure | grammar)

Phrase structure

P(utterance | phrase structure)

Utterance

P(speech | utterance)

Speech signal
(c.f. Chater and Manning, 2006) Josh Tenenbaum



Josh Tenenbaum


