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Why Machine learning

* Find patterns in data
* Make predictions
 Make decisions

e All at the same time

e Understand cognition

e Deal with the data deluge

 Build useful products, e.g. autonomous cars/robots,
environmental anomaly detection, ...



Big data
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I Data inflation H

Unit Size What it means

Bit (b) lorQ Short for “binary digit”®, after the binary code (1 or 0)
computers use to store and process data

Byte (B) 8 bits Enough information to create an English letter or number

in computer code. It is the basic unit of computing

Megabyte (MB)  1,000KB; 2°° bytes From “large” in Greek. The complete works of Shakespeare total SMB.
A typical pop song is about 4MB

Terabyte (TB) 1,000G8; 2*° bytes From “monster” in Greek. All the catalogued books
in America‘s Library of Congress total 15TB

Petabyte (PB) 1,000TB; 2*° bytes All letters delivered by America’s postal service this year will amount
to around 5PB. Google processes around 1PB every hour

Zettabyte (ZB)  1,000EB; a10 bytes The total amount of information in existence
this year is forecast to be around 1.278

Yottabyte (YB)  1,000ZB; 2% bytes  Currently too big to imagine

The prefixes are set by an intergovernmental group, the International Bureau of Weights and Measures.
Source; The Economist Yotta and Zetta were added in 1991; terms for larger amounts have yet to be established.

Wikipedia  Current revisions only uncompressed ~112 GB (896,000,000,000 bits)
Human brain ~100, 000,000,000 neurons and ~60,000, 000,000,000 synapses



Big data: Surveying the universe

“When the Sloan Digital Sky
Survey started work in 2000, its
telescope in New Mexico collected
more data in its first few weeks than
had been amassed in the entire
history of astronomy.

Now, a decade later, its archive
contains a whopping 140 terabytes
of information.

A successor, the Large Synoptic
Survey Telescope, due to come on
stream in Chile in 2016, will acquire
that quantity of data every five
days.”

[The Economist, February 2010]



Big data: Financial markets

» Skyrocketing data volumes: 1.5 million messages/sec and growing
» About 70% of volume in US equity markets submitted electronically

“A 1-millisecond advantage in trading applications can be
worth $100 million a year to a major brokerage.”
-- The TABB Group

Courtesy of Alan Wagner, UBC



Big data: Medicine

National Digital Mammography Archive: a system designed to
Include a database growing by 28 PB per year according to
IBM sources.

Use High Performance
Networks, Hierarchical
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 Library of Congress text database of ~20 TB
o« AT&T 323 TB, 1.9 trillion phone call records.

» \World of Warcraft utilizes 1.3 PB of storage to
maintain its game.

e Avatar movie reported to have taken over 1 PB of
local storage at Weta Digital for the rendering of the

3D CGl effects.

» Google processes ~24 PB of data per day.

e YouTube: 24 hours of video uploaded every
minute. More video is uploaded in 60 days than all
3 major US networks created in 60 years. According
to cisco, internet video will generate over 18 EB of
traffic per month in 2013.



ML opportunities

Business

L Mining correlations, trends, spatio-temporal predictions.
U Efficient supply chain management.

b
3 Opinion mining and sentiment analysis. Salmabr 1S
1 Recommender systems.
o \/
Corporate Earnings
Il Announcements

market data
People reseller

Market Data 2 :

advanced

Alan Wagner, UBC
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ML opportunities
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Big data: text

“Large” text dataset:

* 1.000,000 words in 1967
» 1,000,000,000,000 words in 2006

Success stories:

e Speech recognition
 Machine translation

What is the common thing that makes both of these work well?

o Lots of labeled data
 Memorization is a good policy

[Halevy, Norvig & Pereira, 2009]



Statistical machine translation

| love you | love chocolate | am

Yoteamo Yo amo el chocolate Y0 soy

oW

Get many sentence pairs — easy.

Compute correspondences

Compute translation table: P(Spanish|English)
Repeat steps 2 and 3 till convergence



Statistical machine translation
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Gorgeous r”ed sea, sun sea sky
sun and sky

sun sea sky






Scene completion: more data is better
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Gliven an input image with a missing region,
Efros uses matching scenes from a large
collection of photographs to complete the image

[Efros, 2008]



The semantic challenge

“We’ve already solved the sociological problem of building a network
Infrastructure that has encouraged hundreds of millions of authors to
share a trillion pages of content.

We’ve solved the technological problem of aggregating
and indexing all this content.

But we’re left with a scientific problem of interpreting the content”

Probability ( fact given evidence ) = ?

[Halevy, Norvig & Pereira, 2009]



mse

Approximation, stats and optimization
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Thalamus (LGN) serves strategic role in
gating of\information flow to cortex

Optic tract

Light falls onto
/the photoreceptors
of the retina LGN optic

radiations

\

Hubel, 1995



Topographic maps




“the x and y coordinates correspond to the spatial location of a rat, which
is running around freely inside a large box. The black lines in the left
figure shows how this particular rat explored the box in a fairly
haphazard manner. However, an electrode inserted in the rat’s subcortex
picks up a signal that is anything but chaotic: the responses of said
neuron are given as red dots in the left figure, while the right figure gives
the firing rate distribution (ranging from blue for silent and red for the
peak rate of responding). Although the rat is running about randomly,
this neuron is responding in a grid, seemingly coming on an off in
response to the animal' s spatial location.”

[Hafting et al 2005]



Assoclative memory

Airplane partially | " Retrieved airplane
occluded by clouds | o

Associative

memory

Example 2: Say the alphabet, .... backward

[Jain, Mao & Mohiuddin, 1996]



McCulloch-Pitts model of a neuron
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Complexity
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Re-visiting logic, NP and 2-SAT

Consider the CNF expression S = C7 A ... A C,,, where each clause (} is a
disjunction of literals z; ; V...V z;x, defined on propositional variables. When
each clause has two parents at most, the problem is known as 2-SAT.
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Re-visiting logic, NP and 2-SAT

Parrot — Bird (~-PVB
Bird — Flies C,* BV F
Flies = FEscapes (= ~FV E
Flies = HasWings(: -V H

SsC NG AC, AC,

Verification: Does (P=1,B=1,F=1,E=1,H=1), i.e. (11111), satisfy this 2-SAT problem?
Verification: Does (10111) satisfy it?

Maximization: What is the maximum number of clauses that can be satisfied?
What is the number of possible assignments to (PBFEH)?

Counting: How many assignments satisfy this 2-SAT example?



Logic, NP, 2-SAT and Monte Carlo
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Counting: How many assignments satisfy this 2-SAT example
Approximate answer: Use the Monte Carlo Method.

I. Sample P, B, F, E and H by flipping a coin for each variable N times.

ll. For each sample of (PBFEH), check for satisfiability.

lll. The probability of satisfiability, P(S=1), is approximated as the
number of satisfying samples divided by N.

Iv. The expected number number of satisfiable samples n = P(S=1) 2°.



From max-2-SAT to Energy

Assume some clauses are harder to

satisfy than others. Introduce a
weight (@) to measure this.

To obtain the Energy of the system of

binary variables, use X for a negated
propositional variable and 1-X
otherwise. Then sum over all clauses.

/ -PVv B — QP(!«%S
/ BV F — 0O, B([,p\

-FVH —

G
Introduce the notation  _ ) F( |- 4 \ +

P:Xl,B:XQ,F:X37E2X4,H1:X5.
The total energy of the system is: \Z/_’

E = 0,P O, 8 T<®5+GU>F
-0,PB-0,B8F- B, FC

- 0,fH
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From max-2-SAT to Energy

: X, Xt Xy X <3 Xy
E—0,Pt 0,5+ (05 1+ 0,)F — 0,PB — 0,BF — 0sFF — 94Fff
Let P=x1,B=29,F =x3,F = x4 and H = x5 X
I X3

2 — Xy

The energy can be written as:
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From max-2-SAT to Energy to Probability

Let us look at the energy of a few configurations, assuming all the 6; = 1.
/ In this case the energy is simply:

N E(331,9027 e 7335) =21+ T2 + 223 — X1T2 — TaX3 — T3T4 — T35

What is the lowest energy? When is it attained?
What is the maximum energy?
What should the most probable configuration be?
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Ising models and the 2" law of thermodynamics

L The Ising model describes many physical phenomena:

Q “ The Ising model can be reinterpreted as a statistical model for the
motion of atoms. A coarse model is to make space-time a lattice and
imagine that each position either contains an atom or it doesn’t.”

Wikipedia Ising Model page.

Q “ The original motivation for the model was the phenomenon of
magnetism.”

U Second law of thermodynamics and stability.




On information and energy — Maxwell’s Demon

In this thought experiment, “ an imaginary container is divided into two parts by
an insulated wall, with a door that can be opened and closed by what came to
be called “ Maxwell’s Demon”. The hypothetical demon is only able to let the
“hot” molecules of gas flow through to a favored side of the chamber, causing
that side to appear to spontaneously heat up while the other side cools down.”

O Does this violate the 2nd law?

O What is the relation of information and energy?



Restricted Boltzmann Machines

Hidden variables (features)

L8

W . i .
% Weighted connections form images

Visible (e.g. 4-pixel image)

A joint configuration (v, h) of the binary visible and hidden units has an energy
given by the following RBM model:

E(V, h) = — Z bi’l)i — Z bjhj — Zviwijhj
1,J

1E€Epixels j€ features

And hence a Boltzmann probability:

1 _ v
p(V,h) :Ee Blvh)



Distributed representation

Il 7 £ N B

Feature vector 1 0 1 0 0
00O
7/

Hidden units

Learned
weights

i/ m |

4x4 image patch

Insight: We’re assuming edges occur often in nature, but dots don’t -

We learn the regular structures in the world



Image patch



Deep learning (Hinton and collaborators)

L W,
L1000 | pewi
| 1000 |

Pretraining

b [30] Code layer!
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Unrolling

Fine-tuning



Encoding digits

(A) The two-dimensional codes for 500 digits of each class produced by taking the first

two principal components of all 60,000 training images.
(B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder.

Ny~

OO~ EWN =0

These 2-dimensional embeddings of images of digits
enable us to make predictions (classification)



Completing scenes

[Honglak Lee et al 2009]



In the binary case where v € {0,1}” and h € {0,1}" the energy
function can be expressed as:

D K
E(’U h W ZZULWU}L szbz — Zhjbj
1=1 j=1

1=1 j7=1

The probabilities of each node can be easily obtained.

K
p(v; = 1|h, W) = sigmoid (Z Wiih; + bi)

J=1

D
p(h; = 1|v, W) = sigmoid (Z Wijv; + bj> :
i=1
1
14-exp(—a)
ple: One simply flips K coins for the hidden units and D coins for

the visible units.

where sigmoid(a) = . The model is therefore easy to sam-



Contrastive divergence learning

1. Sample hidden units h,, from p(h|v,, W®).

2. Sample imaginary data o, from p(v|h,, W®).

3. Sample hidden units again h,, from p(h|o,, W®).

4. Update the parameters: Pea\ Confalb uld ion
datfa

1Yy — 1 N =
chli—l_l) — chl? T 77(t> N Z vdnhkn — N Z Udnhkn
n=1 n=1

5. Increase t to t + 1 and go to step 2.



Hierarchical spatio-temporal feature learning

ing RBM

pooling RBM




Hierarchical spatio-temporal feature learning

Observed gaze sequence

Model predictions




Change blindness



People as Bayesian reasoners

Environment

change environment
through nteract on

censory signals
from the environrment

Organism
g ™
Bayes’ Prior
Dcision s / Knowledge

LY il Posterior 4-0\ -
M  Rasponse Sensory | Stimulus oA
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Action «—— Perception «—— Sensation |
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Theory * Species organized in taxonomic tree structure
« Feature 1 generated by mutation process with rate A,
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Theory * Species organized in taxonomic tree structure
« Feature 1 generated by mutation process with rate A,
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Theory * Species organized in taxonomic tree structure
« Feature 1 generated by mutation process with rate A,
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T0O:

* No organizational structure

for species.
» Features distributed

Independently over species.
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T1:

e Species organized In
taxonomic tree structure.

« Features distributed via
stochastic mutation process.
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TO0: p(Data|T0) ~1.83 x 104
« No organizational structure

for species.
» Features distributed

Independently over species.
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T1: p(Data|T1) ~2.42 x 1032
e Species organized In

taxonomic tree structure.
» Features distributed via

stochastic mutation process.
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(a)

S— NP VP (1 V— saw (:8)  N-—cat 1)
VP — V NP (.75) Vv — prodded (-2 Det — the (1)
VP — V NP PP (.25) N — telescope (-2) P — with (1)
NP — Det Noun (.7) N — stick (:3)
NP — NP PP (.3) N — girl (.3)
PP — P NP (1) N — boy (1)

(b)

NP:7 SR2s T /\\
/\ e \a
Det:1 N:3 | v NP PP
1 ‘V .8 NP7 PP:1. Pr= 25
the girl | S AN \
saw Det1 |\| 1
NP:..7
the boy \
Det:1 :
with | I\‘l..2
the telescope
Pr(tree) =1x . 7x1x .3x 25X 8Xx.7Xx
1Tx.1x1x1x.7x1x.2% 0.00041
(c)
S
/ \ VP75
N/P:\7 7 TVP.T5 R / \
Det.1 N:3 / \ oY NP3
I
| | Iv.8 NP-.3 ‘—' / \
the girl \ l ) NP PP
\
*\saw 4 - -
TUoNe7 PP(1)- Pr = 75x 3= 21
SN
N:.1Det:1

the telescope

Pritree) =1x . 7x1x.3x.75x .8x .3x.7x1
X.1X1x1x.7x1x.2%0.00037

TRENDS in Cognitive Sciences

(Chater & Manning, 2006)



“Universal Grammar” Hierarchical phrase structure
grammars (e.g., CFG, HPSG, TAG)
l P(grammar | UG)

Grammar S —> NPVP
NP — Det [Adj] Noun [RelClause]
RelClause — [Rel] NPV
VP — VP NP
P(phrase structure | grammar) VP s Verb
v S
Phrase structure P
P /\P
P(utterance | phrase structure) ‘
Pronoun Verb Article Noun
1 1 | 1
Utte ranCe shoot the wumpus

| P(speech | utterance)
Speech signal m«v M““' «W'MM' “"""‘WW"“
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(a) (b)

Principles Classes: {R, D, S} (Risks, Diseases, Symptoms) Objects can activate machines
Causallaws:R =D, D—> S Activation requires contact
Machines are (near) deterministic

Structure

Aon B on
Condhe)
Machine
activates
Patient 1: Stressful lifestyle - - -
o Chest Pain
A A C

Patient 2: Smoking

B
Coughing
Patient 3: Working in factory ' ' ' ' '

Chest Pain A B C C B
(c)
Principles Classes: {R, D, S} Classes: {C} Classes: {R, D, S}
Causal laws: R - D, D—»S Causal laws: C = C Causallaws:D—> R, S—> S

Structure ? 6 O

iz

Slereve

Q
0
O

Data

TRENDS in Cognitive Sciences ‘]OSh Tenenbaum



