
CPSC-540 Probabilistic Machine Learning 2011

Homework # 3
Due Thursday, Th March 3rd 12:30pm.

NAME:

Signature:

STD. NUM:

General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are to be done on your
own.
Homework grades will be based not only on getting the “correct answer,” but also on good writing style
and clear presentation of your solution. It is your responsibility to make sure that the graders can easily
follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for explaining why you
got stuck on a promising line of attack. More importantly, you will get valuable feedback that will help you
learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you used to help you
solve the problem (e.g. books from the library). This won’t affect your grade but is important as academic
honesty.
When dealing with python exercises, please attach a printout with all your code and show your results
clearly.



1 Linear regression with kernels
The file linregRbfDemo.m in PMTK implements linear regression for Gaussian kernels. Instead of doing linear
regression, I’d like you to try ridge regression with 3 kernel widths equal to 0.1, 0.2, and 0.6 (instead of the 3 current
kernel widths). For your specific dataset and each value of the kernel width, estimate the best value of the regulariser
either by 5-fold cross-validation or by computing the evidence. Hand in your code, plots of the fits for each of the 4
values of the kernel width at the optimum value of the regularizer that you found and at the value of the regularizer that
the code currently uses. Hand in also a plot of the evidence or cross-validation error as a function of the regularization
coefficient for the kernel width 0.2. In total, you should hand in 9 plots (or subplots).

2 MLE and MAP for multinoullis
Suppose X ∈ {1, 2} and Y ∈ {1, 2, 3}. Define the joint distribution P (X = j, Y = k) = θj,k. Consider the training
data D below, where row i represents xi and yi:

X Y
1 1
2 2
1 3
1 1
2 2
2 3

1. Find the maximum likelihood estimates. Hint: just build the joint 2 × 3 table of counts and normalize so all
numbers sum to one.



2. Now suppose p(θ) = Dir(θ|α1, . . . , α6), where α` = 1 for ` = 1 : 6 (here we use ` to represent the double
index (j, k), since we require

∑
` θ` = 1). What is the MAP estimate θ̂ = arg max p(θ)p(D|θ)?

3 Mean, mode, variance for the beta distribution
Suppose θ ∼ Beta(a, b). Show that

E [θ] =
a

a+ b
(1)

var [θ] =
ab

(a+ b)2(a+ b+ 1)
(2)

mode [θ] =
a− 1

a+ b− 2
(3)



4 Beta updating from censored likelihood
Suppose we toss a coin n = 5 times. Let X be the number of heads. We observe that there are fewer than 3 heads, but
we don’t know exactly how many. Let the prior probability of heads be p(θ) = Beta(θ|1, 1). Compute the posterior
p(θ|X < 3) up to normalization constants, i.e., derive an expression proportional to p(θ,X < 3).

5 Bayesian analysis of the Poisson distribution
In his book, Kevin defines the Poisson distribution with rate λ and derives its MLE. Here we perform a conjugate
Bayesian analysis.

1. 5 points Derive the posterior p(λ|D) assuming a conjugate prior p(λ) = Ga(λ|a, b) ∝ λa−1e−λb. Hint: the
posterior is also a Gamma distribution.

2. 5 points What does the posterior mean tend to as a → 0 and b → 0? (Recall that the mean of a Ga(a, b)
distribution is a/b.)



6 Posterior predictive distribution for a batch of data with the dirichlet-
multinomial model

In class, we discussed the the posterior predictive distribution for a single multinomial trial using a dirichlet prior.
Now consider predicting a batch of new data, D̃ = (X1, . . . , Xm), consisting of m single multinomial trials (think of
predicting the next m words in a sentence, assuming they are drawn iid). Derive an expression for

p(D̃|D, α) (4)

Your answer should be a function of α, and the old and new counts (sufficient statistics), defined as

Nold
k =

∑
i∈D

I(xi = k) (5)

Nnew
k =

∑
i∈D̃

I(xi = k) (6)

Hint: recall that, for a vector of counts, N1:K , the marginal likelihood (evidence) is given by

p(D|α) =
Γ(α)

Γ(N + α)

∏
k

Γ(Nk + αk)

Γ(αk)
(7)

where α =
∑
k αk and N =

∑
kNk.



7 Bayesian linear regression in 1d with known σ2

Consider fitting a model of the form
p(y|x,θ) = N (y|w0 + w1x, σ

2) (8)

to the data shown below:

x = [94,96,94,95,104,106,108,113,115,121,131];
y = [0.47, 0.75, 0.83, 0.98, 1.18, 1.29, 1.40, 1.60, 1.75, 1.90, 2.23];

1. Compute an unbiased estimate of σ2 using

σ̂2 =
1

N − 2

N∑
i=1

(yi − ŷi)2 (9)

(The denominator is N − 2 since we have 2 inputs, namely the offset term and x.) Here ŷi = ŵ0 + ŵ1xi, and
ŵ = (ŵ0, ŵ1) is the MLE.

2. Now assume the following prior on w:
p(w) = p(w0)p(w1) (10)

Use an (improper) uniform prior on w0 and a N (0, 1) prior on w1. Show that this can be written as a Gaussian
prior of the form p(w) = N (w|w0,V0). What are w0 and V0?

3. Compute the marginal posterior of the slope, p(w1|D, σ2), where D is the data above, and σ2 is the unbiased
estimate computed above. What is E

[
w1|D, σ2

]
and var

[
w1|D, σ2

]
Show your work. (You can use Matlab if

you like.) Hint: the posterior variance is a very small number!

4. What is a 95% credible interval for w1?


