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Homework # 2
Due Thursday, Th Feb 3rd 12:30pm.

NAME:
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STD. NUM:

General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are to be done on your
own.
Homework grades will be based not only on getting the “correct answer,” but also on good writing style
and clear presentation of your solution. It is your responsibility to make sure that the graders can easily
follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for explaining why you
got stuck on a promising line of attack. More importantly, you will get valuable feedback that will help you
learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you used to help you
solve the problem (e.g. books from the library). This won’t affect your grade but is important as academic
honesty.
When dealing with python exercises, please attach a printout with all your code and show your results
clearly.



1 MLE for the uniform distribution
Consider a uniform distribution centered on 0 with width 2a. The density function is given by

p(x) =
1

2a
I(x ∈ [−a, a]) (1)

1. Given a data set x1, . . . , xn, what is the maximum likelihood estimate of a (call it â)?

2. What probability would the model assign to a new data point xn+1 using â?

3. Do you see any problem with the above approach? Briefly suggest (in words) a better approach.

2 MLE for the Poisson distribution
The Poisson pmf is defined as Poi(x|λ) = e−λ λ

x

x! , for x ∈ {0, 1, 2, . . .} where λ > 0 is the rate parameter. Derive the
MLE.



3 Gradient and Hessian of log-likelihood for logistic regression
1. Let σ(a) = 1

1+e−a be the sigmoid function. Show that

dσ(a)

da
= σ(a)(1− σ(a)) (2)

2. Using the previous result and the chain rule of calculus, derive an expression for the log-likelihood of binary
logistic regression, as presented in class.



3. The Hessian can be written as H = XTSX, where S := diag(µ1(1 − µ1), . . . , µn(1 − µn)). Show that H is
positive definite. (You may assume that 0 < µi < 1, so the elements of S will be strictly positive, and that X is
full rank.)

4 Gradient and Hessian of log-likelihood for multinomial logistic regression
1. Let µik = S(ηi)k. Prove that the Jacobian of the softmax is

∂µik
∂ηij

= µik(δkj − µij) (3)

where δkj = I(k = j).



2. Hence show that

∇wc
` =

∑
i

(yic − µic)xi (4)

Hint: use the chain rule and the fact that
∑
c yic = 1.

3. Show that the block submatrix of the Hessian for classes c and c′ is given by

Hc,c′ = −
∑
i

µic(δc,c′ − µi,c′)xixTi (5)



5 Logistic regression in Matlab
Download the dataset tremor.mat from the course website. A description of this dataset appears in:

http://www.mitpressjournals.org/doi/pdf/10.1162/089976601750541831
This is a two-class classification problem with two-dimensional input features. You can load the data into matlab as
follows:

load tremor;
data =[x_tr t_tr];
[N,arb] = size(data); % N= Number of data points.
data = data(randperm(N),:); % Order the data randomly.
xv = x_te’; % Test set input data.
dv = t_te; % Test set target data.
x = data(:,1:2)’; % Train set input data.
d = data(:,3); % Train set target data.

Just as we did in class for the XOR classification problem with logistic regression, your task is to fit linear logistic
regression, quadratic logistic regression, and kernel logistic regression to the tremor training data. For kernel logistic
regression, place the kernel centers at the data points. You can use Gaussian kernels, thin-plate spline kernels, logistic
kernels or any other kernel of your choice. Please hand in 3 Figures and the code. Each figure should show the training
and test points and the decision boundary. You should also compute the percentage of classification errors for each
method:

percentageError = sum(abs(yp-d))*100/N % Train error where the prediciton yp is 0 or 1.

The person that gets the lowest test set error gets an extra 2 marks in the midterm. Careful with over-fitting the test
set!


