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Homework # 1
Due Thursday, Th 27 12:30pm.
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General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are to be done on your
own.
Homework grades will be based not only on getting the “correct answer,” but also on good writing style
and clear presentation of your solution. It is your responsibility to make sure that the graders can easily
follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for explaining why you
got stuck on a promising line of attack. More importantly, you will get valuable feedback that will help you
learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you used to help you
solve the problem (e.g. books from the library). This won’t affect your grade but is important as academic
honesty.
When dealing with python exercises, please attach a printout with all your code and show your results
clearly.



1 Gaussian decision boundaries
Let p(x|y = j) = N (x|µj , σj) where j = 1, 2 and µ1 = 0, σ2

1 = 1, µ2 = 1, σ2
2 = 106. Let the class priors be equal,

p(y = 1) = p(y = 2) = 0.5.

1. Find the decision region
R1 = {x : p(x|µ1, σ1) ≥ p(x|µ2, σ2)} (1)

Sketch the result. Hint: draw the curves and find where they intersect. Find both solutions of the equation

p(x|µ1, σ1) = p(x|µ2, σ2) (2)

Hint: recall that to solve a quadratic equation ax2 + bx+ c = 0, we use

x =
−b±

√
b2 − 4ac

2a
(3)

2. Now suppose σ2 = 1 (and all other parameters remain the same). What is R1 in this case?

3. In both cases, use Matlab’s symbolic algebra toolbox to confirm your answers (Hint: you’ll need the commands
normpdf and solve). Hand in the scripts and the plots of the densities illustrating where they intersect.



2 Dummy encoding and linear models
Consider a linear regression model of the form

yi = w1xi1 + w2xi2 + w3xi3 + w4xi4 + εi (4)
xi1 = 1 (5)
xi2 = gi (6)
xi3 = age of person i (7)
xi4 = xi2 × xi3 (8)

where gi = 1 if person i is in some control group, and gi = 0 otherwise. So we have

E [y|xi, gi = 0] = w1 + w3agei (9)
E [y|xi, gi = 1] = (w1 + w2) + (w3 + w4)agei (10)

Hence the difference in offsets between the two groups is w2, and the difference in slopes is w4. Sketch the regression
line for the two groups assuming w1 = 1, w3 = 1 and with the following settings for the other parameters: (1) w2 = 0,
w4 = 0, (2) w2 = 0, w4 = 1, (3) w2 = 1, w4 = 0, (4) w3 = 1, w4 = 1. You should have 4 figures, each with 2 lines.
You can draw the figures by hand, or use Matlab. Assume the age ranges from 0 to 10.



3 Variance of a sum
Show that the variance of a sum is

var [X + Y ] = var [X] + var [Y ] + 2cov [X,Y ] (11)

where cov [X,Y ] is the covariance between X and Y

4 Correlation coefficient is between -1 and +1
Prove that −1 ≤ ρ(X,Y ) ≤ 1



5 Correlation coefficient for linearly related variables is ±1
Show that, if Y = aX + b for some parameters a > 0 and b, then ρ(X,Y ) = 1. Similarly show that if a < 0, then
ρ(X,Y ) = −1.

6 Uncorrelated does not imply independent
Let X ∼ U(−1, 1) and Y = X2. Clearly Y is dependent on X (in fact, Y is uniquely determined by X). However,
show that ρ(X,Y ) = 0. Hint: if X ∼ U(a, b) then E[X] = (b− a)/2 and var [X] = (b− a)2/12.



7 Bayes rule for medical diagnosis
After your yearly checkup, the doctor has bad news and good news. The bad news is that you tested positive for a
serious disease, and that the test is 99% accurate (i.e., the probability of testing positive given that you have the disease
is 0.99, as is the probability of tetsing negative given that you don’t have the disease). The good news is that this is a
rare disease, striking only one in 10,000 people. What are the chances that you actually have the disease? (Show your
calculations as well as giving the final result.)

8 Conditional independence
1. LetH ∈ {1, . . . ,K} be a discrete random variable, and let e1 and e2 be the observed values of two other random

variables E1 and E2. Suppose we wish to calculate the vector

~P (H|e1, e2) = (P (H = 1|e1, e2), . . . , P (H = K|e1, e2))

Which of the following sets of numbers are sufficient for the calculation?

(a) P (e1, e2), P (H), P (e1|H), P (e2|H)

(b) P (e1, e2), P (H), P (e1, e2|H)

(c) P (e1|H), P (e2|H), P (H)

2. Now suppose we now assume E1 ⊥ E2|H (i.e., E1 and E2 are conditionally independent given H). Which of
the above 3 sets are sufficent now?

Show your calculations as well as giving the final result. Hint: use Bayes rule.



9 The Monty Hall problem
On a game show, a contestant is told the rules as follows:

There are three doors, labelled 1, 2, 3. A single prize has been hidden behind one of them. You get to
select one door. Initially your chosen door will not be opened. Instead, the gameshow host will open one
of the other two doors, and he will do so in such a way as not to reveal the prize. For example, if you first
choose door 1, he will then open one of doors 2 and 3, and it is guaranteed that he will choose which one
to open so that the prize will not be revealed.

At this point, you will be given a fresh choice of door: you can either stick with your first choice, or you
can switch to the other closed door. All the doors will then be opened and you will receive whatever is
behind your final choice of door.

Imagine that the contestant chooses door 1 first; then the gameshow host opens door 3, revealing nothing behind
the door, as promised. Should the contestant (a) stick with door 1, or (b) switch to door 2, or (c) does it make no
difference? You may assume that initially, the prize is equally likely to be behind any of the 3 doors. Hint: use Bayes
rule.



10 Moments of a Bernoulli distribution
Let X ∈ {0, 1} be a binary random variable (e.g., a coin toss). Suppose p(X = 1) = θ. Then

p(x|θ) = Ber(X|θ) = θx(1− θ)1−x (12)

is called a Bernoulli distribution. Prove the following facts:

E [X] = p(X = 1) = θ, var [X] = θ(1− θ) (13)



11 Exchangeability
Consider Polya’s urn. This is an urn containing r red balls and b blue balls. Now consider the following experiment:
we draw a ball, note its color, and replace the ball back in the urn along with c additional balls of the same color.
Let us denote the event of observing a red ball at the ith trial by Ri, and similarly observing a blue ball by Bi.
Let Xi ∈ {R,B} be the random variable representing the color of the i’th ball, where p(Xi = R) = p(Ri) and
p(Xi = B) = p(Bi). Prove that the Xi are exchangeable but not iid. (Hint: the Xi are identically distributed, but are
not independent.)



12 Pairwise independence does not imply mutual independence
We say that two random variables are pairwise independent if

p(X2|X1) = p(X2) (14)

and hence
p(X2, X1) = p(X1)p(X2|X1) = p(X1)p(X2) (15)

We say that n random variables are mutually independent if

p(Xi|XS) = p(Xi) ∀ ⊆ {1, . . . , n} \ {i} (16)

and hence

p(X1:n) =

n∏
i=1

p(Xi) (17)

Show that pairwise independence between all pairs of variables does not necessarily imply mutual independence. It
suffices to give a counter example.



13 Conditional independence iff joint factorizes
In the text we said X ⊥ Y |Z iff

p(x, y|z) = p(x|z)p(y|z) (18)

for all x, y, z such that p(z) > 0. Now prove the following alternative definition: X ⊥ Y |Z iff there exist function g
and h such that

p(x, y|z) = g(x, z)h(y, z) (19)

for all x, y, z such that p(z) > 0.



14 Deriving the inverse gamma density
Let X ∼ Ga(a, b) and Y = 1/X . Show that Y ∼ IG(a, b). Hint: use the change of variables formula.

15 Marginalizing a Dirichlet
Suppose

p(θ1, θ2, θ3) = Dir(α1, α2, α3) (20)
∝ θα1−1

1 θα2−1
2 (1− θ1 − θ2)α3−1 (21)

since θ1 + θ2 + θ3 = 1. Derive an expression for

p(θ1) =

∫ 1−θ1

0

p(θ1, θ2)dθ2 (22)

You may ignore (cancel) any normalizing constants in your final answer. But you should identify the functional form
of the marginal, along with its parameters.

Hint 1: make the substitution u = θ2
1−θ1 so 1− u = 1−θ1−θ2

1−θ1 . The answer should be another Dirichlet. (In fact, it
will be a beta distribution, which is just a special case of Dirichlet.)

Hint 2: Use the fact that ∫ 1

0

xa−1(1− x)b−1dx = B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(23)

since this is the normalization constant of the beta distribution.
Hint 3: Using the above substitutions, rewrite the integral as

p(θ1) ∝ θa1(1− θ1)b
∫ 1

0

uc(1− u)ddu (24)

for suitably chosen a, b, c, d. (You must derive this equation and work out what these values are!)



16 Student T as infinite mixture of Gaussians
It turns out that several distributions of interest can be expressed as an “infinite” weighted sum of Gaussians, where
each Gaussian has a different variance, i.e.,

p(x) =

∫
N (x|µ, τ2)π(τ2)dτ2 (25)

for some distribution π(τ2). This is called a Gaussian scale mixture.
Show that the Student distribution can be written as follows:

T (x|µ, σ2, ν) =

∫ ∞
0

N (x|µ, σ2/λ)Ga(λ|ν
2
,
ν

2
)dλ (26)



17 Normalization constant for a 1D Gaussian
The normalization constant for a zero-mean Gaussian is given by

Z =

∫ b

a

exp

(
− x2

2σ2

)
dx (27)

where a = −∞ and b =∞. To compute this, consider its square

Z2 =

∫ b

a

∫ b

a

exp

(
−x

2 + y2

2σ2

)
dxdy (28)

Let us change variables from cartesian (x, y) to polar (r, θ) using x = r cos θ and y = r sin θ. Since dxdy = rdrdθ,
and cos2θ + sin2 θ = 1, we have

Z2 =

∫ 2π

0

∫ ∞
0

r exp

(
− r2

2σ2

)
drdθ (29)

Evaluate this integral and hence show Z = σ
√

(2π). Hint 1: separate the integral into a product of two terms, the first
of which (involving dθ) is constant, so is easy. Hint 2: if u = e−r

2/2σ2

then du/dr = − 1
σ2 re

−r2/2σ2

, so the second
integral is also easy (since

∫
u′(r)dr = u(r)).



18 Uncorrelated does not imply independent unless jointly Gaussian
Let X ∼ N (0, 1) and Y = WX , where p(W = −1) = p(W = 1) = 0.5. It is clear that X and Y are not
independent, since Y is a function of X .

1. Show Y ∼ N (0, 1). Thus X and Y are both Gaussian. Hint: To show the mean is zero, use the fact that X and
W are independent. To show the variance is 1, use the rule of iterated variance

var [Y ] = E [var [Y |W ]] + var [E [Y |W ]] (30)

2. Show cov [X,Y ] = 0. Thus X and Y are uncorrelated but dependent, even though they are Gaussian. Hint: use
the definition of covariance

cov [X,Y ] = E [XY ]− E [X]E [Y ] (31)

and the rule of iterated expectation
E [XY ] = E [E [XY |W ]] (32)


