
CPSC-540: Machine Learning 124

Lecture 12 - Gaussian Processes

OBJECTIVE: In this lecture we introduce gaussian processes

(GPs) for regression. These nonparametric models allow us

to generate nonlinear predictions. Yet, the models are very

tractable and permit the application of experimental design

and active learning ideas.

� GAUSSIAN PROCESSES

A Gaussian process, denoted z(·) ∼ GP (m(·), K(·, ·)), is an

infinite random process indexed by a variable x such that any

realization z(xi) is Gaussian with mean m(xi) and covari-

ance (symmetric positive definite kernel) Kij = k(xi,xj).

The Gaussian process prior is denoted:

z(·) ∼ GP (m,K)

CPSC-540: Machine Learning 125

The most popular kernels are the following:

• Polynomial

k(xi,xj) = (xix
T
j + b)p

• Gaussian

k(xi, xj) = e−
1
2σ (xi−xj)(xi−xj)

T

• Sigmoid (logistic, neural network)

k(xi, xj) = tanh(αxix
T
j − β)

On observing data {x1:n, z1:n} and a test point xn+1 (or

more test points), the vector of predictions on the test and

training data is jointly Gaussian:zn+1

z1:n

 ∼ N
m(xn+1)

m(x1:n)

 ,

k kT

k K



CPSC-540: Machine Learning 126

where k = k(xn+1,xn+1),

kT =
[
k(xn+1,x1) · · · k(xn+1,xn)

]

K =


k(x1,x1) · · · k(x1,xn)

...

k(xn,x1) · · · k(xn,xn)


The above expression for p(z1:n+1|x1:n+1) follows from the

definition of GPs. We can now proceed to use standard ma-

nipulation of Gaussian distributions to obtain the predictive

distribution: p(zn+1|x1:n+1, z1:n), or simply

E(zn+1|x1:n+1, z1:n) = m(xn+1) + kTK−1(z1:n − m(x1:n))

cov(zn+1|x1:n+1, z1:n) = k − kTK−1k

That is, we have a simple closed form expression to make

nonlinear predictions!

CPSC-540: Machine Learning 127

� GPS WITH NOISE

Typically, the data is noisy, so one considers the regression

model:

y(x) = z(x) + N (0, σ2I)

This only involves a change in the covariance (kernel) func-

tion:

y(·) ∼ GP (m,K + σ2I)

To do binary classification, we adopt a Bernoulli logistic

model as we did when learning importance sampling.

CPSC-540: Machine Learning 128

� GP WITH UNKNOWN MEAN FUNCTION

Since the mean function is typically unknown, one can con-

struct a GP for prediction as follows:

y(x) =

d∑
j=1

fj(x)θj + GP (0, σ2K)

where the f ’s are some features of the input space.

On observing data {x1:n,y1:n} and a test point xn+1 (or

more test points), the vector of predictions on the test and

training data is jointly Gaussian:yn+1

y1:n

 ∼ N
 f

F

θ, σ2

k kT

k K



CPSC-540: Machine Learning 129

where, again, k = k(xn+1,xn+1),

kT =
[
k(xn+1,x1) · · · k(xn+1,xn)

]

K =


k(x1,x1) · · · k(x1,xn)

...

k(xn,x1) · · · k(xn,xn)


f =

[
f1(xn+1) · · · fd(xn+1)

]

F =


f1(x1) · · · fd(x1)

...

f1(xn) · · · fd(xn)



As in the linear model, we can assign a Gaussian prior θ ∼
N (θ0, σ

2R−1). This prior results in a Gaussian posterior

with mean and covariance:

µ = E(θ|F,y) = (FTK−1F + R)−1(FTK−1y + Rθ0)

cov(θ|F,y) = (FTK−1F + R)−1σ2 = Σσ2

CPSC-540: Machine Learning 130

Under this posterior distribution, the predictive distribution

of the Gaussian process becomes:

E(yn+1|y1:n) = fµ + kTK−1(y1:n − Fµ)

cov(yn+1|y1:n)= σ2
{
k − kTK−1k + (f−FTK−1k)TΣ(f−FTK−1k)

}

� ACTIVE LEARNING WITH GAUSSIAN PROCESSES

We choose an experiment (point x) so as to minimize the

variance of the prediction. That is,

u�(x) = min
x

cov(yn+1|y1:n)

That is, we should choose to experiment in parts of the space

where there is high uncertainty (also known as entropy).

In the 1D case the covariance is really a univariate variance

as we only have a single test point. In general we can try

to minimize either the determinant or trace (better) of the

predictive covariance for a block of test points.

CPSC-540: Machine Learning 131

Lecture 12 - Unsupervised Learn-

ing

OBJECTIVE: When there are no labels y, there are many

useful patterns we can still find in the data. Here we intro-

duce two of the most popular algorithms in machine learning

and data mining: K-means and EM.

Unsupervised Learning

Our goal is to automatically discover patterns and structure

in the data. Some examples include

• Novelty detection (e.g. detecting new strands of HIV).

• Data association (e.g. machine translation, multi-target

tracking, object recognition from annotated images).

• Clustering.

CPSC-540: Machine Learning 132

Clustering

Assume we are given the data x1:n, with xi ∈ R
2.

�

We want to find clusters (groups where data items are simi-

lar).

CPSC-540: Machine Learning 133

K-means

�

K-means is a simple iterative algorithm for clustering data.

In our 2D example, it proceeds as follows

CPSC-540: Machine Learning 134

1. Initialisation: Choose k = 2 means µ1:2 at random.

2. Compute distances: For c = 1, . . . , k and i =

1, . . . , n compute the distance ‖xi − µc‖2.

3. Assign data to nearest mean: To keep track of

assignments, introduce the indicator variable zi, such

that

Ic(zi) =


1 if c = arg min

c′
‖xi − µc′‖2

0 otherwise

That is, I2(zi) = 1 if observation xi is closer to cluster

2. Ic(zi) end up being the entries of an n × k matrix

with only one 1 per row and many zeros.

4. Update means:

µc =

∑n
i=1 Ic(zi)xi∑n
i=1 Ic(zi)

5. Repeat: Go back to step 2. until the means and as-

signments stop changing.

CPSC-540: Machine Learning 135

The problem with this algorithm is that the assignments are

hard. Something is either this or that. Sometimes, however,

we would like to say that something is this with probability

0.7 or that with probability 0.3.

Finite Mixtures of Gaussians

We would like to find not only the means, but also the vari-

ances of each cluster and the probabilities of belonging to

each cluster.

�

CPSC-540: Machine Learning 136

�

In the 2 cluster case we have:

p(xi|µ1,2, σ
2
1:2) = p(zi = 1)N (xi|µ1, σ

2
1)

+ p(zi = 2)N (xi|µ2, σ
2
2)

In general, we have

p(xi|θ) =

k∑
c=1

p(c)N (xi|µc, σ
2
c)

CPSC-540: Machine Learning 137

where θ = (µ1:c, σ
2
1:c) summarises the model parameters and

p(c) = p(zi = c). Clearly,
∑k

c=1 p(c) = 1. It will be conve-

nient for future derivations, to consider the following alter-

native way of writing a mixture model:

p(xi, zi = c|θ) =

k∏
c=1

[
p(c)N (xi|µc, σ

2
c)
]Ic(zi)

EM for Mixtures of Gaussians

In this section, we use intuition to introduce the expectation-

maximisation (EM) (later we will derive it formally). If we

know Ic(zi), then it is easy to compute (µc, σ
2
c) by maximum

likelihood. We repeat this for each cluster. The problem is

that we have a chicken and egg situation. To know the cluster

memberships, we need the parameters of the Gaussians. To

know the parameters, we need the cluster memberships.

One solution is to approximate Ic(zi) with our expectation of

it given the data and our current estimate of the parameters

CPSC-540: Machine Learning 138

θ. That is, we replace Ic(zi) with

ξic � E [Ic(zi)|xi, θ]

�

ξic � E [Ic(zi)|xi, θ] =

Note that ξic is a soft-assignments matrix:

CPSC-540: Machine Learning 139

�

Once we know ξic, we can compute the Gaussian mixture

parameters:

µc =

∑n
i=1 ξicxi∑n
i=1 ξic

Σc =

∑n
i=1 ξic(xi − µc)(xi − µc)

′∑n
i=1 ξic

p(c) =
1

n

n∑
i=1

ξic

The EM for Gaussians is as follows:

1. Initialise.

2. E Step: At iteration t, compute the expectation of the

CPSC-540: Machine Learning 140

indicators for each i and c:

ξ
(t)
ic =

p(c)(t)N (xi|µ(t)
c , Σ

(t)
c)∑k

c′=1 p(c′)(t)N (xi|µ(t)
c′ , Σ

(t)
c′)

and normalise it (divide by sum over c).

3. M Step: Update the parameters p(c)(t), µ
(t)
c , Σ

(t)
c .

EM for Categorical Data

Matrix data with categorical entries is ubiquitous on the

web. Examples include word-document matrices used for

information retrieval and item-judge ratings for collaborative

CPSC-540: Machine Learning 141

filtering:

words1:L

documents1:n


3 1 . . . 6

7 4 . . . 2

... . . .

 = T1:n

judges1:L

movies1:n


1 ? . . . 5

5 4 . . . ?

... . . .

 = M1:n

Each row of N can be modelled with a multinomial distrib-

ution.

p(Ti) ∝
nw∏

w=1

δTiw
w

We assume that the text documents are i.i.d.

p(T1:n) =

n∏
i=1

p(Ti)

Suppose the documents come from nc distinct clusters. Then

CPSC-540: Machine Learning 142

they are distributed according to a mixture of multinomials:

p(Ti|θ) =

nc∑
c=1

p(c)

nw∏
w=1

δTiw
wc

The maximum likelihood EM for Categorical data involves

iterating the following two steps:

1. E Step: At iteration t, compute the expectation of the

indicators for each i and c:

ξic ∝ p(c)

nw∏
w=1

δTiw
wc

and normalise it (divide by sum over c).

2. M Step: Update the parameters:

δwc =

∑n
i=1 ξicTiw∑n

i=1

∑nw
w=1 Tiwξic

p(c) =
1

n

n∑
i=1

ξic

CPSC-540: Machine Learning 143

EM for Multimodal Data

A document with an image (represented by a vector xi ∈ R
d)

and text Ti can be modelled as follows:

p(di|θ) =

nc∑
c=1

p(c)N (xi|µc, Σc)

nw∏
w=1

δTiw
wc

The maximum likelihood EM is as follows:

1. E Step: At iteration t, compute the expectation of the

indicators for each i and c:

ξic ∝ p(c)N (xi|µc, Σc)

nw∏
w=1

δTiw
wc

and normalise it (divide by sum over c).

CPSC-540: Machine Learning 144

2. M Step: Update the parameters:

µc =

∑n
i=1 ξicxi∑n
i=1 ξic

Σc =

∑n
i=1 ξic(xi − µc)(xi − µc)

′∑n
i=1 ξic

δwc =

∑n
i=1 ξicTiw∑n

i=1

∑nw
w=1 Tiwξic

p(c) =
1

n

n∑
i=1

ξic

General Derivation of EM for ML

Our goal, in general, is to maximise the (log)-likelihood of

the data x given the parameters θ. That is, we want to solve

the optimisation problem:

θ� = arg max
θ

log p(x1:n|θ)

For notational simplicity, let x � x1:n.

Sometimes it helps to introduce the variables z � z1:n. These

may simplify the optimisation problem:

CPSC-540: Machine Learning 145

�

They may also decouple a complex optimisation problem

into simpler ones:

CPSC-540: Machine Learning 146

�

We now prove that the problem:

θ� = arg max
θ

log p(x1:n|θ)

can be solved by solving the following problem:

θ� = arg max
θ

E[log p(x, z|θ)]

= arg max
θ

∫
[log p(x, z|θ)]p(z|x, θold)dz

where θold denotes the old (previous) estimate of θ.

CPSC-540: Machine Learning 147

Step 1: We prove

log p(x|θ) = E[log p(x, z|θ)] − E[log p(z|x, θ)]

�

p(x|θ) = p(x|θ)
p(z|x, θ)

p(z|x, θ)

log p(x|θ) =

CPSC-540: Machine Learning 148

Step 2: We prove

E[log p(z|x, θold)] ≥ E[log p(z|x, θ)]

CPSC-540: Machine Learning 149

� Hint: log x ≤ x − 1

E[log p(z|x, θ)] − E[log p(z|x, θold)]

=

CPSC-540: Machine Learning 150

Step 3: We note

log p(x|θ) − log p(x|θold) =
{
E[log p(x, z|θ)] − E[log p(x, z|θold)]

}
+
{
E[log p(z|x, θold)] − E[log p(z|x, θ)]

}
Hence to increase log p(x|θ), we only have to increase Q(θ, θold) �
E[log p(x, z|θ)]. This completes the proof.

The general EM algorithm is as follows:

1. Initialise.

2. E Step: Given θold, compute the expectation Q(θ, θold).

3. M Step: Maximise Q(θ, θold) by differentiating it with

respect to θ and equating it to zero.

The E and M steps are iterated until a local max-

imum of the likelihood is reached.

CPSC-540: Machine Learning 151

EM for Mixture Models

Assume that we are given the i.i.d. data x1:n. The Q function

for a mixture model of this data is:

Q(θ, θold) = Ep(z|x,θold)

{
log

[
n∏

i=1

p(xi, zi = c|θ)

]}

= Ep(z|x,θold)

{
log

[
n∏

i=1

nc∏
c=1

(p(c)p(xi|θc))
Ic(zi)

]}

= Ep(z|x,θold)

{
n∑

i=1

nc∑
c=1

Ic(zi) log [p(c)p(xi|θc)]

}

=

nc∑
c1=1

. . .

nc∑
cn=1

{
n∑

i=1

nc∑
c=1

Ic(zi) log [p(c)p(xi|θc)]

}
n∏

j=1

p(zj|xj, θ
old)

=

n∑
i=1

nc∑
c=1

log [p(c)p(xi|θc)]

nc∑
c1=1

. . .

nc∑
cn=1

Ic(zi)

n∏
j=1

p(zj|xj, θ
old)

CPSC-540: Machine Learning 152

This expression can be greatly simplified by noticing that

nc∑
c1=1

. . .

nc∑
cn=1

Ic(zi)

n∏
j=1

p(zj|xj, θ
old)

=

 nc∑
c1=1

. . .

nc∑
ci−1=1

nc∑
ci+1=1

. . .

nc∑
cn=1

n∏
j=1,j �=i

p(zj|xj, θ
old)

 p(zi = c|xi, θ
old)

=

n∏
j=1,j �=i

 nc∑
cj=1

p(zj|xj, θ
old)

 p(zi = c|xi, θ
old)

= p(zi = c|xi, θ
old)

Consequently, the Q function simplifies to:

Q(θ, θold) =

n∑
i=1

nc∑
c=1

p(zi = c|xi, θ
old) log [p(c)p(xi|θc)]

CPSC-540: Machine Learning 153

The EM algorithm for mixtures is as follows:

1. Initialise.

2. E Step: Given θold, compute p(zi = c|xi, θ
old).

3. M Step: Maximise Q(θ, θold) by differentiating it with

respect to p(c) and θc. One should add constraints to

ensure that all probabilities sum to 1.

EM for Gaussian Mixtures

The data x1:n, with xi ∈ R
d, is distributed according to the

following normal mixture

p(xi|θ) =

nc∑
c=1

p(c)N (xi|µc, Σc)

Hence, the Q function is:

Q(θ, θold) =

n∑
i=1

nc∑
c=1

ξic log [p(c)N (xi|µc, Σc)]

We know that the E step consists of computing the ξic:

CPSC-540: Machine Learning 154

�

ξic =

The M step requires that we maximise Q subject to the

constraint
∑

c p(c) = 1. To estimate p(c), we have:

CPSC-540: Machine Learning 155

�

To compute the remaining parameters, we expand the Q

CPSC-540: Machine Learning 156

function:

Q(θ, θold) =

n∑
i=1

nc∑
c=1

ξic log
[
|Σc|−1

2e−
1
2(xi−µc)

′Σ−1
c (xi−µc)

]
=

n∑
i=1

nc∑
c=1

ξic

[
1

2
log|Σc|−1 − 1

2
(xi − µc)

′Σ−1
c (xi − µc)

]
Note that we got rid of constant terms as these don’t affect

the location of the maxima for µc and Σc.

�
∂Q

∂µc
=

CPSC-540: Machine Learning 157

�
∂Q

∂Σ−1
c

=

EM for Discrete Mixtures

Suppose the matrix data (e.g. documents) comes from nc

distinct clusters. That is, it is distributed according to a

CPSC-540: Machine Learning 158

mixture of multinomials:

p(Ti|θ) =

nc∑
c=1

p(c)

nw∏
w=1

δTiw
wc

where Tiw means the number of words w in document i. The

Q function is:

�

Q(θ, θold) =

The E step is as follows:

�

ξic =

In the M step for categorical variables, we need to maximise

Q subject to the constraints
∑nc

c=1 p(c) = 1 and
∑nw

w δwc =

1. To compute p(c), we introduce Lagrange multipliers, µ,

CPSC-540: Machine Learning 159

and maximise the Lagrangian

L(p(c), µ) = Q + µ

(
1 −

nc∑
c=1

p(c)

)

by differentiating with respect to p(c) and equating to zero.

That is, we want to compute

∂

∂p(c)

{
n∑

i=1

nc∑
c=1

ξic log

[
p(c)

nw∏
w=1

δTiw
wc

]
+ µ

(
1 −

nc∑
c=1

p(c)

)}
= 0

n∑
i=1

ξic
1

p(c)
− µ = 0

Summing both sides over c, we get µ = n. Therefore, the

estimate for p(c) is

p(c) =
1

n

n∑
i=1

ξic

CPSC-540: Machine Learning 160

The estimate for δ is obtained following the same steps:

∂

∂δwc

{
n∑

i=1

nc∑
c=1

ξic log

[
p(c)

nw∏
w=1

δTiw
wc

]
+ µ

(
1 −

nw∑
w

δwc

)}
= 0

n∑
i=1

ξicTiw
1

δwc
− µ = 0

Summing both sides over w, we get µ =
∑n

i=1

∑nw
w=1 ξicTiw

and, hence, the estimate of δwc is

δwc =

∑n
i=1 ξicTiw∑n

i=1

∑nw
w=1 ξicTiw

EM MAP Estimation

The EM formulation for MAP estimation is straightforward.

One simply has to augment the objective function in the M

step, QML, by adding to it the log prior densities. That is,

CPSC-540: Machine Learning 161

the MAP objective function is

QMAP = Ep(z|x,θ(old)) [log p(z, x, θ)]

= Ep(z|x,θ(old)) [log p(z, x|θ) + log p(θ)]

= QML + log p(θ)

EM MAP Estimates for Categorical Mixtures

The unconstrained objective function is

QMAP = QML + log p(θ)

Since the distributions of zi and Tiw are multinomial, we

adopt conjugate Dirichlet priors for p(c) and δw,c. That is,

our priors are:

p(p(c)) =
Γ(
∑nc

c=1 αc)∏nc
c=1 Γ(αc)

nc∏
c=1

p(c)αc−1

p(δwc) =

nc∏
c=1

Γ(
∑nw

w βwc)∏nw
w=1 Γ(βwc)

nw∏
w=1

δβwc−1
wc

To compute p(c), we proceed as in the previous section by

CPSC-540: Machine Learning 162

differentiating the augmented Lagrangian with respect to

p(c) and equating to zero

∂

∂p(c)

{
n∑

i=1

nc∑
c=1

ξic log

[
p(c)

nw∏
w=1

δTiw
wc

]
+ µ

(
1 −

nc∑
c=1

p(c)

)}
+

log

[
Γ(
∑nc

c=1 αc)∏nc
c=1 Γ(αc)

nc∏
c=1

p(c)αc−1

]}
= 0

n∑
i=1

(ξic + αc − 1)
1

p(c)
− µ = 0

Summing both sides over c, we get µ = n − nc +
∑

c αc.

Hence, the estimate for p(c) is

p(c) =

∑n
i=1 ξic + αc − 1

n +
∑

c αc − nc

Similarly, the constrained maximisation for δwc requires that

CPSC-540: Machine Learning 163

we compute

∂

∂δwc

{
n∑

i=1

nc∑
c=1

ξic log

[
p(c)

nw∏
w=1

δTiw
wc

]
+ µ

(
1 −

nw∑
w

δwc

)}
+

log

[
nc∏

c=1

Γ(
∑nw

w βwc)∏nw
w=1 Γ(βwc)

nw∏
w=1

δβwc−1
wc

]}
= 0

n∑
i=1

(ξicTiw + βwc − 1)
1

δwc
− µ = 0

thus yielding

δwc =

∑n
i=1 ξicTic + βwc − 1∑nw

w=1 (
∑n

i=1 ξicTic + βwc − 1)

Note that if the α and β hyper-paramemeters are set to 1, we

obtain the ML estimates. Typically, α is set to 1 and β is set

to a number higher than 2. This choice of hyper-parameters

allows for smoothing. It forces all the δwc to have have a

significant value (each word has a significant probability of

belonging to each cluster) and hence many of the p(c) go

to zero. This is an easy way of automatically choosing the

number of mixture components.

CPSC-540: Machine Learning 164

Lecture 13 - Dynamic Models

OBJECTIVE: In this lecture, we introduce dynamic mod-

els, discuss some applications, and derive Kalman, HMM and

particle filtering.

� DYNAMIC MODELS

A dynamic model consists of three equations: the ini-

tial probability, the transition model and the observation

model. The unobserved signal (hidden states or unknown

parameters) {xt; t ∈ N}, xt ∈ X , is modelled as a Markov

process of initial distribution p (x0) and transition equation

p (xt|xt−1). The observations {yt; t ∈ N}, yt ∈ Y , are as-

sumed to be conditionally independent given the process

{xt; t ∈ N} and of marginal distribution p (yt|xt).

p (x0)

p (xt|xt−1) for t ≥ 1

p (yt|xt) for t ≥ 1

CPSC-540: Machine Learning 165

The corresponding graphical models is as follows:

�

Examples include:

• Bioinformatics:

CPSC-540: Machine Learning 166

• Speech processing: Here yt are acoustic vectors and

xt correspond to the phonemes/words/sentences we’re

trying to recognise.

• Target tracking: yt are observations (typically noisy

and subject to clutter) and xt corresponds to our es-

timate of the position, velocity and acceleration of the

entity being tracked.

CPSC-540: Machine Learning 167

• Self-Diagnosis in Robots: yt are the robot’s obser-

vations and xt its internal states. If the robot knows its

internal state it can carry out diagnosis and self repair.

• Optimal Control

• Localisation and Map Learning in Robots: yt

are observations and xt corresponds to the estimate of

the robot’s location and the map of the environment.

CPSC-540: Machine Learning 168

• HCI

driving
Anomalous

Fatigue Intruder

Future
maneuvres

load
Information

Driver’s
gestures

GPS

Car sensors

Traffic

driving
Anomalous

Fatigue Intruder

Future
maneuvres

load
Information

Driver’s
gestures

GPS

Car sensors

Traffic

time t time t+1

• Graphics: yt are observations of a character’s move-

ment (joint angles) and xt is a compressed version of

the motion. Components of xt can be used to switch

between different types of motions, e.g. running, walk-

ing, dancing.

CPSC-540: Machine Learning 169

• Dynamic Data Compression

• Econometrics: yt could, for example, correspond to

forex data and xt to the volatility (“variance”) of the

market.

• Digital Communications

• Ecology Models

CPSC-540: Machine Learning 170

Bayesian Solution

The inference tasks in dynamic settings can be classified as

follows:

• Filtering: Compute p(xt|y1:t).

• Prediction: Compute p(xt+τ |y1:t).

• Smoothing: Compute p(xt−τ |y1:t).

where τ is positive. We focus on the filtering problem. Our

task is, therefore, to obtain a recurse estimator of p(xt|y1:t).

This is done in two steps:

Prediction: p (xt| y1:t−1) =

∫
p (xt|xt−1) p (xt−1| y1:t−1) dxt−1

Updating: p (xt| y1:t) =
p (yt|xt) p (xt| y1:t−1)∫

p (yt|xt) p (xt| y1:t−1) dxt

CPSC-540: Machine Learning 171

These expressions and recursions are deceptively simple as

one cannot typically compute the integrals. However, if the

distributions are Gaussian or discrete, we can solve the in-

tegrals. In the Gaussian case, the answer is known as the

Kalman filter. In the discrete case, the answer gives rise

to the HMM filter. In general, we need to do sampling

(Particle filtering) to solve this problem.

CPSC-540: Machine Learning 172

Kalman Filtering

We consider the following dynamic state space model:

xt = Axt−1 + Bwt + Fut

yt = Cxt + Dvt + Gut,

where yt ∈ R
ny denotes the observations, xt ∈ R

nx denotes

the unknown Gaussian states, ut ∈ U is a known control

signal, the parameters (A,B, C, D, F, G) are known matri-

ces and the initial mean and covariance of xt are µ0, Σ0.

The noise processes are i.i.d Gaussian: wt ∼ N (0, I) and

vt ∼ N (0, I). Our model implies the continuous densities

CPSC-540: Machine Learning 173

�

p(xt|xt−1) =

p(yt|xt) =

Since the likelihood and prior are Gaussian, the posterior

(filtering distribution) is also Gaussian. Its mean µ and co-

variance Σ can be computed using the following recursions

(Kalman filter):

CPSC-540: Machine Learning 174

µt|t−1 = Aµt−1|t−1 + Fut

Σt|t−1 = AΣt−1|t−1A
′ + BB′

St = CΣt|t−1C
′ + DD′

yt|t−1 = Cµt|t−1 + Gut

µt|t = µt|t−1 + Σt|t−1C
TS−1

t (yt − yt|t−1)

Σt|t = Σt|t−1 − Σt|t−1C
′S−1

t CΣt|t−1

where

µt|t−1 � E (xt| y1:t−1)

µt|t � E (xt| y1:t)

yt|t−1 � E (yt| y1:t−1)

Σt|t−1 � cov (xt| y1:t−1)

Σt|t � cov (xt| y1:t)

St � cov (yt| y1:t−1)

CPSC-540: Machine Learning 175

The predictive density is

p (yt| y1:t−1) = N (
yt; yt|t−1, St

)

CPSC-540: Machine Learning 176

Learning the Model Parameters

One can use the EM algorithm to learn the model parame-

ters: θ = (A,B,C,D, F, G, µ0, Σ0):

Initialisation : Start with a guess for θ0.

E-step : Determine the expected log-likelihood density func-

tion of the complete data given the current estimate θold:

Q =

∫
log p(x0:T , y1:T |θ)p(x0:T |y1:T , θold)dx0:T

M-step : The new θ can be found by simple differentiation

of the Q function with respect to θ.

An excellent reference for this is:

http://www.gatsby.ucl.ac.uk/~zoubin/papers/tr-96-2.ps.gz

Zoubin’s Matlab code is available at:

http://www.gatsby.ucl.ac.uk/~zoubin/software.html

CPSC-540: Machine Learning 177

Jump Markov Linear Models

For Markov transitions, the model is simpler:

�

CPSC-540: Machine Learning 178

We represent the complex nonlinear process (robot sys-

tem) with a dynamic mixture of linear processes. In addi-

tion to the continuous state variables corresponding to each

linear process, we have a discrete state variable that deter-

mines the linear regime of operation. In the fault diagnosis

setting, each regime corresponds to a particular fault. Dif-

ferent regimes could, however, be used to represent levels

of the fault or different internal states of the robot for the

purposes of controlling it automatically. We acquire data for

each regime separately. This data enables us to do off-line

identification with the EM algorithm.

Once the stationary parameters have been identified, real-

time Rao-Blackwellised particle filtering (RBPF) algorithms

are used to estimate the continuous and discrete states of

the system on-line. These estimates are used to determine

the type of fault and control policies.

CPSC-540: Machine Learning 179

In mathematical terms, we adopt the following state space

representation:

zt ∼ P (zt|zt−1)

xt = A(zt)xt−1 + B(zt)wt + F (zt)ut

yt = C(zt)xt + D(zt)vt + G(zt)ut,

where,

• yt ∈ R
ny denotes the measurements.

• xt ∈ R
nx denotes the unknown continuous states.

• ut ∈ U is a known control signal.

• zt ∈ {1, . . . , nz} denotes the unknown discrete states

(normal operation and faulty conditions).

• The noise processes are i.i.d Gaussian: wt ∼ N (0, I)

and vt ∼ N (0, I).

• Typically, the (A,B, C, D, F, G) matrices are estimated

with the EM algorithm for linear dynamic systems. That

CPSC-540: Machine Learning 180

is, one simply fixes z and obtains data from the physical

process. With z known, it is straightforward to esti-

mate these matrices from the measured data using the

EM algorithm. We have to repeat this process for each

possible value of z.

• The initial states are x0 ∼ N (µ0, Σ0) and z0 ∼ p(z0).

• The transition kernel P (zt|zt−1) is a discrete Markov

transition matrix.

We should notice that for each realization of zt, we have

a single linear-Gaussian model. If we knew zt, we could

solve for xt exactly using the Kalman filter algorithm. The

directed acyclic graphical model representation of our model

is shown below:

An good reference for this is:

http://www.cs.ubc.ca/~nando/papers/rbpf.ps

CPSC-540: Machine Learning 181

HMMs

�

In HMMs the states are discrete and the observations

can be either continuous or discrete. Let’s consider continu-

ous observations. The discrete case is discusses in Jordan’s

book. The joint probability of the model is:

p(x, y|θ) = p(x0)

T−1∏
t=0

p(xt+1|xt)

T∏
t=1

p(yt|xt)

We adopt a notation in which state variables can be used

as indices. When xt takes on its ith value and xt+1 takes

CPSC-540: Machine Learning 182

on its jth value, we let adt,dt+1 denote the (i, j)th entry of

the transition matrix p(xt+1|xt). That is, p(xt+1 = j|xt =

i) = ai,j. Formally, this interpretation is achieved via the

following definition:

p(xt+1|xt) =

nx∏
i,j=1

[aij]
xi

tx
j
t+1

That is, we use a multinomial to describe the state transi-

tions. Similarly

p(x0) =

nx∏
i

π
xi

0
i

The likelihood (a.k.a. obsevation model, emmission model)

is Gaussian

p(yt|xt = i) = N (µi, Σi)

These expressions allow us to write an expression for p(x, y|θ.

In the E step, we compute the expectation of the complete

log likelihood

QML = Ep(x|y,θ(old))[log p(x, y|θ)]

CPSC-540: Machine Learning 183

That is, in the E step we need to be able to compute p(x|y, θ(old)).

Differentiating QML, give us the update equations for the pa-

rameters: a, π, µ, Σ.

E: Forward-Backward Algorithm

we have:

p(xt|y) =
p(y|xt)p(xt)

p(y)

=
p(y1, ..., yt|xt)p(yt+1, ..., yT |xt)p(xt)

p(y)

=
α(xt)β(xt)

p(y)

where

p(y) =
∑
xt

α(xt)β(xt)

Alpha and Beta are the messages propagated in the graph.

We also define:

γ(xt) =
α(xt)β(xt)

p(y)

That is, γ(xt) = p(xt|y) is the smoothing distribution.

CPSC-540: Machine Learning 184

In the Forward-Backward algorithm, the forward pass al-

lows us to compute α recursively and the backward pass

allows us to compute βt. Combining these estimates, we

obtain p(xt|y) and p(y).

In the forward direction, we have:

α(x0) = p(x0)

and

α(xt+1) = p(y1, ..., yt+1, xt+1)

= p(y1, ..., yt+1|xt+1)p(xt+1)

= p(y1, ..., yt|xt+1)p(yt+1|xt+1)p(xt+1)

=
∑
xt

p(y1, ...yt, xt, xt+1)p(yt+1|xt+1)

=
∑
xt

p(y1, ...yt|xt)p(xt+1|xt)p(xt)p(yt+1|xt+1)

=
∑
xt

α(xt)p(xt+1|xt)p(yt+1|xt+1)

Note that the algorithm proceeds ”forward” in time.

CPSC-540: Machine Learning 185

For the beta variables we can obtain a ”backward” recur-

sion:

β(xt) = p(yt+1, ..., yT |xt)

=
∑
xt+1

p(yt+1, ..., yT |xt+1, xt)p(xt+1|xt)

=
∑
xt+1

p(yt+2, ..., yT |xt+1)p(xt+1|xt)p(yt+1|xt+1)

=
∑
xt+1

β(xt+1)p(xt+1|xt)p(yt+1|xt+1)

The beta recursion is a backward recursion, i.e. we start at

the final time step T and proceed back-wards to the initial

time step. For the initialization of the beta recursion , we

define β(xT) to be a vector of ones.

Then we have

γ(xt) =
α(xt)β(xt)∑
xt

α(xt)β(xt)

For the M step we will also need the clique probability

ξ(xt, xt+1) = p(xt, xt+1|z)

CPSC-540: Machine Learning 186

which is given by:

ξ(xt, xt+1) =
α(xt)p(yt+1|xx+1)γ(xt+1)p(xt+1|xt)

α(xt+1)

M Step

The complete log-likelihood is given by:

log p(x, y) = log p(x0)

T−1∏
t=0

p(xt|xt−1)

T∏
t=1

p(yt|xt)

=log


nx∏
i

π
xi

0
i

T−1∏
t=0

nx∏
i=1,j=1

[aij]
xi

tx
j
t+1

T∏
t=1

nx∏
i

N (µi, Σi)
xi

t


=

nx∑
i

xi
0 log πi +

T−1∑
t=0

nx∑
i=1,j=1

xi
tx

j
t+1 log aij +

T∑
t=1

nx∑
i

xi
t logN (µi, Σi)

CPSC-540: Machine Learning 187

Taking expectations, we obtain the Q function:

Q =

nx∑
i

p(x0 = i|y, θold) log πi

+

T−1∑
t=0

nx∑
i=1,j=1

p(xt = i, xt+1 = j|y, θold) log aij

+

T∑
t=1

nx∑
i

p(xt = i|y, θold) logN (µi, Σi)

Now we simply take derivative with respect to each individ-

ual parameter to obtain the M step updates:

âij =

∑T−1
t=0 ξ(xt = i, xt+1 = j)∑T−1

t=0 γ(xt = i)

π̂i = γ(x0 = i)

µ̂i =

∑T
t=1 γ(xt = i)yt∑T
t=0 γ(xt = i)

Σ̂i =

∑T
t=1 γ(xt = i)(yt − µi)(yt − µi)

′∑T
t=0 γ(xt = i)

CPSC-540: Machine Learning 188

Particle Filtering

We begin with a review of the sequential Monte Carlo method

for approximating probability distributions and carrying out

integration in high-dimensional spaces. Assume we have

a distribution π(x1:n) over a sequence of random vectors,

x1:n � {x1,x2, . . . ,xn}, which is only known up to a nor-

malization constant:

π(x1:n) = Z−1
n f(x1:n)

where Zn �
∫

f (x1:n)dx1:n is the partition function. We

are often interested in computing this partition function and

other expectations, such as

I(g(x1:n)) =

∫
g(x1:n)π(x1:n)dx1:n

If we had a set of samples
{
x

(i)
1:n

}N

i=1
from π, we could ap-

proximate this integral with the following Monte Carlo esti-

CPSC-540: Machine Learning 189

mator

π̂(dx1:n) =
1

N

N∑
i=1

δ
x

(i)
1:n

(dx1:n)

and consequently approximate the expectations of interest

with

Î(g(x1:n)) =
1

N

N∑
i=1

g(x
(i)
1:n)

It is typically hard to sample from π directly. Instead, we

can sample from a proposal distribution q and weight the

samples according to

wn =
f (x1:n)

q(xn|x1:n−1)f(x1:n−1)
wn−1

� Proof:

CPSC-540: Machine Learning 190

The set of weighted samples from q allows us to construct

the following estimate of the partition function

Ẑn =
1

N

N∑
i=1

w(i)
n

� Proof:

Given a set of N particles (samples) x
(i)
1:n−1, we obtain a set

of particles x
(i)
n by sampling from q(xn|x(i)

1:n−1) and applying

the recursive importance weights. To overcome slow drift in

the particle population, a resampling (selection) step chooses

the fittest particles.

CPSC-540: Machine Learning 191

Sequential importance sampling step

• For i = 1, ..., N , sample from the proposal

x̃(i)
n ∼ q(xn|x(i)

1:n−1)

and set x̃(i)
1:n �

(
x̃(i)

n ,x(i)
1:n−1

)
.

• For i = 1, ..., N , evaluate the importance weights

w(i)
n =

f(x̃(i)
1:n)

q(x̃(i)
n |x̃(i)

1:n−1)f(x̃(i)
1:n−1)

w
(i)
n−1

• Normalise the importance weights

w̃(i)
n =

w
(i)
n∑

j w
(j)
n

Selection step

• Resample the discrete weighted measure
{
x̃(i)

0:n, w̃
(i)
n

}N

i=1
to obtain an unweighted mea-

sure
{
x(i)

0:n, 1
N

}N

i=1
of N new particles.

In Bayesian estimation, the target distribution is the poste-

rior distribution

π(x1:n) = p(x1:n|y1:n) = Z−1
n f (x1:n)

CPSC-540: Machine Learning 192

where Zn = p(y1:n) and

f(x1:n) = p(x1:n,y1:n) =

n∏
k=1

p(yn|xn)p(xn|xn−1)

Hence

wn =
p(yn|xn)p(xn|xn−1)

q(xn|x1:n−1,y1:n)
wn−1

� Proof:

In particular, if we choose the proposal to be the transition

prior p(xn|xn−1), then the importance weights are simply the

likelihood funtions p(yn|xn).

CPSC-540: Machine Learning 193

�

