
CPSC-540: Machine Learning 83

Lecture 9 - Monte Carlo

OBJECTIVE: Monte Carlo techniques are used to carry

out integration, simulation and optimisation in large dimen-

sional spaces. They allow us to carry out inference and learn-

ing with complex intractable models. In this lecture, we

will learn about Monte Carlo, importance sampling, Markov

chain Monte Carlo (MCMC) and particle filters.

� MONTE CARLO

Monte Carlo methods enable us to solve the following

problems:

1. Normalisation: To obtain the posterior p(x|y) given

the prior p(x) and likelihood p(y|x), the normalising

factor in Bayes’ theorem needs to be computed

p(x|y) =
p(y|x)p(x)∫

X p(y|x′)p(x′)dx′ .

2. Marginalisation: Given the joint posterior of (x, z) ∈

CPSC-540: Machine Learning 84

X × Z , we may often be interested in the marginal

posterior

p(x|y) =

∫
Z

p(x, z|y)dz.

3. Expectation: The objective of the analysis is often to

obtain summary statistics of the form

Ep(x|y)(f (x)) =

∫
X

f(x)p(x|y)dx

for some function of interest f : X → R
nf integrable

with respect to p (x| y). Examples of appropriate func-

tions include the conditional mean, in which case f (x) =

x, or the conditional covariance of x where f (x) =

xx′ − Ep(x|y)(x)E′
p(x|y)(x).

4. Statistical mechanics: Here, one needs to compute

the partition function Z of a system with states s and

Hamiltonian E(s)

Z =
∑

s

exp

[
−E(s)

kT

]
,

CPSC-540: Machine Learning 85

where k is the Boltzmann’s constant and T denotes the

temperature of the system. Summing over the large

number of possible configurations is prohibitively expen-

sive. Note that the problems of computing the partition

function and the normalising constant in statistical in-

ference are analogous.

5. Optimisation: The goal of optimisation is to extract

the solution that minimises some objective function from

a large set of feasible solutions. In fact, this set can be

continuous and unbounded. In general, it is too compu-

tationally expensive to compare all the solutions to find

out which one is optimal.

6. Simulation: One often needs to simulate physical sys-

tems in physics and computer graphics.

CPSC-540: Machine Learning 86

The Monte Carlo Principle

The idea of Monte Carlo simulation is to draw an i.i.d. set

of samples {x(i)}N
i=1 from a target density p(x) defined on

a high-dimensional space X . These N samples can be used

to approximate the target distribution with the following

empirical point-mass function (think of it as a histogram):

pN (dx) =
1

N

N∑
i=1

δx(i) (dx) ,

where δx(i) (dx) denotes the delta-Dirac mass located at x(i).

Samples
Approximation
Target distribution

CPSC-540: Machine Learning 87

Consequently, one can approximate the integrals (or very

large sums) I (f) with tractable sums IN (f) as follows

�

I (f) =

∫
X

f(x)p(x)dx.

CPSC-540: Machine Learning 88

• The advantage of Monte Carlo integration over deter-

ministic integration arises from the fact that the former

positions the integration grid (samples) in regions of high

probability.

• The N samples can also be used to obtain a maximum

of the objective function p(x) as follows

x̂ = arg max
x(i);i=1,...,N

p
(
x(i)

)

However, we will show later that it is possible to con-

struct simulated annealing algorithms that allow us to

sample approximately from a distribution whose support

is the set of global maxima.

• When p(x) has standard form, e.g. Gaussian, it is

straightforward to sample from it using easily available

routines. However, when this is not the case, we need

to introduce more sophisticated techniques based on im-

portance sampling and MCMC.

CPSC-540: Machine Learning 89

Importance Sampling

Importance sampling is a “classical” solution that goes back

to the 1940’s. Let us introduce an arbitrary importance

proposal distribution q(x) such that its support includes the

support of p(x) and such that we can sample from it. Then

we can rewrite I(f) as follows

I (f) =

∫
f (x) w (x) q (x) dx

where w (x) � p(x)
q(x) is known as the importance weight.

� Proof:

CPSC-540: Machine Learning 90

Consequently, if one can simulate N i.i.d. samples {x(i)}N
i=1

according to q (x) and evaluate w(x(i)), a possible Monte

Carlo estimate of I (f) is

�

ÎN (f) =

This estimator is unbiased and, under weak assumptions,

the strong law of large numbers applies, that is ÎN (f)
a.s.−→

N→∞
I (f). It is clear that this integration method can also be

interpreted as a sampling method where the posterior density

p (x) is approximated by:

p̂N (dx) =
1

N

N∑
i=1

w(x(i))δx(i) (dx)

Some proposal distributions q(x) will obviously be preferable

to others.

CPSC-540: Machine Learning 91

When the normalising constant of p(x) is unknown, it is still

possible to apply the importance sampling method:

�

The Monte Carlo estimate of I (f) becomes

ĨN (f) =
1
N

∑N
i=1 f

(
x(i)

)
w(x(i))

1
N

∑N
j=1 w

(
x(i)

) =

N∑
i=1

f
(
x(i)

)
w̃(x(i))

where w̃(x(i)) is a normalised importance weight. For N

finite, ĨN (f) is biased (ratio of two estimates) but asymp-

totically, under weak assumptions, the strong law of large

numbers applies, that is ĨN (f)
a.s.−→

N→∞
I (f).

CPSC-540: Machine Learning 92

Sampling Importance Resampling (SIR)

If one is interested in obtaining M i.i.d. samples from

p̂N (x), then an asymptotically (N/M → ∞) valid method

consists of resampling M times according to the discrete dis-

tribution p̂N (x).

�

This procedure results in M samples x̃(i) with the possibility

that x̃(i) = x̃(j) for i �= j. After resampling, the approxima-

tion of the target density is

p̃M (dx) =
1

M

M∑
i=1

δx̃(i) (dx)

CPSC-540: Machine Learning 93

The SIR algorithm to sample from the posterior p(x|y) is as

follows:

Set i = 1

Repeat until i = N

1. Sample x(i)∼q (x)

2. Evaluate p(x(i)|y) up to a normalising constant.

3. Evaluate q(x(i)) up to a normalising constant.

4. Compute w(x(i)).

Normalise w(x(i)) to obtain w̃(x(i)).

Resample {x(i), w̃(x(i))}N
i=1 −→ {x̃(i), 1/N}N

i=1

CPSC-540: Machine Learning 94

Example: Logistic Regression and Binary Classi-

fication

Given the input-output i.i.d. data sets x � x1:T � {x0, x1, . . . , xT}
and y � y1:T � {y0, y1, . . . , yT}, where xt ∈ R and yt ∈
{0, 1}. The idea is to come up with a model that takes a

new input xT+1 and produces as output p(yT+1 = 1|xT+1)

and p(yT+1 = 0|xT+1). This classification problem arises in

several areas of technology, including condition monitoring

and binary decision systems. For example, when monitoring

patients, we might wish to decide whether they require an

increase in drug intake based on new evidence.

�

CPSC-540: Machine Learning 95

For practical reasons, we parameterise our model. In particu-

lar, we introduce the following Bernoulli likelihood function:

p(yt|xt, θ) =

[
1

1 + exp (−θxt)

]yt
[
1 − 1

1 + exp (−θxt)

]1−yt

where θ are the model parameters. The logistic function

p(yt = 1|xt) = 1
1+exp(−θxt)

is conviniently bounded between

0 and 1.

�

We also assume a Gaussian prior

p(θ) =
1√

2πσ2
exp

(
− 1

2σ2
(θ − µ)′(θ − µ)

)

CPSC-540: Machine Learning 96

The goal of the analysis is then to compute the posterior

distribution p(θ|x1:T , y1:T). This distribution will enable us

to classify new data as follows

p(yT+1|x1:T+1) =

∫
Θ

p(yT+1|xT+1, θ)p(θ|x1:T , y1:T)dθ

Bayes’ rule gives us the following expression for the posterior

p(θ|x1:T , y1:T) ∝ 1√
2πσ2

exp

(
− 1

2σ2
(θ − µ)′(θ − µ)

)

×
T∏

t=1

[
1

1 + exp (−θ′x)

]yt
[
1 − 1

1 + exp (−θ′x)

]1−yt

The problem is that in this case we can’t solve the nor-

malising integral analytically. So we have to use numeri-

cal methods — in this case importance sampling — to ap-

proximate p(θ|x1:T , y1:T). Note that we cannot sample from

p(θ|x1:T , y1:T) directly because we don’t know the normalis-

ing constant. So instead we sample from a proposal distri-

bution q(θ) (say a Gaussian) and weight the samples using

importance sampling. After obtaining N samples of θ from

CPSC-540: Machine Learning 97

the posterior, we can classify new data as follows

�

In your homework, you’ll be given some data and the follow-

ing prior and proposal:

p(θ) = N (1, 1.5)

q(θ) = N (1, 3)

The prior, likelihood, posterior and proposal are shown in

the following plot.

CPSC-540: Machine Learning 98

−2 −1 0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
x 10

−3

θ

Prior
Generating θ
Likelihood
Posterior
Proposal

The empirical posterior (histogram approximation) obtained

with importance sampling is:

0 1 2 3 4 5 6
0

0.05

0.1

0.15
Importance Sampling Approximation

CPSC-540: Machine Learning 99

3 MCMC Algorithms

MCMC is a strategy for generating samples x(i) while explor-

ing the state space X using a Markov chain mechanism. This

mechanism is constructed so that the chain spends more time

in the most important regions. In particular, it is constructed

so that the samples x(i) mimic samples drawn from the target

distribution p(x). (We reiterate that we use MCMC when

we cannot draw samples from p(x) directly, but can evaluate

p(x) up to a normalising constant.)

It is intuitive to introduce Markov chains on finite state

spaces, where x(i) can only take s discrete values x(i) ∈
X = {x1, x2, . . . , xs}. The stochastic process x(i) is called a

Markov chain if

p(x(i)|x(i−1), . . . , x(1)) = T (x(i)|x(i−1)),

Google’s PageRank is a good example of a Markov

chain algorithm.

CPSC-540: Machine Learning 100

For any starting point, the chain will converge to the in-

variant distribution p(x) (principal eigenvector), as long as

T is a stochastic transition matrix that obeys the following

properties:

1. Irreducibility : For any state of the Markov chain, there

is a positive probability of visiting all other states. That

is, the matrix T cannot be reduced to separate smaller

matrices, which is also the same as stating that the tran-

sition graph is connected.

2. Aperiodicity : The chain should not get trapped in cy-

cles.

CPSC-540: Machine Learning 101

A sufficient, but not necessary, condition to ensure that

a particular p(x) is the desired invariant distribution is the

following reversibility (detailed balance) condition

p(x(i))T (x(i−1)|x(i)) = p(x(i−1))T (x(i)|x(i−1)).

Summing both sides over x(i−1), gives us

�

MCMC samplers are irreducible and aperiodic Markov chains

that have the target distribution as the invariant distribu-

tion. One way to design these samplers is to ensure that

detailed balance is satisfied. However, it is also important to

design samplers that converge quickly.

CPSC-540: Machine Learning 102

In continuous state spaces, the transition matrix T becomes

an integral kernel K and p(x) becomes the corresponding

eigenfunction∫
p(x(i))K(x(i+1)|x(i))dx(i) = p(x(i+1)).

The kernel K is the conditional density of x(i+1) given the

value x(i). It is a mathematical representation of a Markov

chain algorithm. In the following sections, we will see how

to construct algorithmic versions of these kernels using a

general recipe known as Metropolis-Hastings.

CPSC-540: Machine Learning 103

The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is the most pop-

ular class of MCMC methods. Most practical MCMC algo-

rithms can be interpreted as special cases or extensions of

this algorithm.

An MH step of invariant distribution p (x) and proposal dis-

tribution q (x�|x) involves sampling a candidate value x�

given the current value x according to q (x�|x). The Markov

chain then moves towards x� with acceptance probability

A(x, x�) = min{1, [p(x)q(x�|x)]−1 p(x�)q(x|x�)}

Otherwise, it remains at x.

CPSC-540: Machine Learning 104

The pseudo-code is

1. Initialise x(0).

2. For i = 0 to N − 1

• Sample u ∼ U[0,1].

• Sample x� ∼ q(x�|x(i)).

• If u < A(x(i), x�) = min
{

1, p(x�)q(x(i)|x�)

p(x(i))q(x�|x(i))

}
x(i+1) = x�

else

x(i+1) = x(i)

The following figure shows the results of running the MH

algorithm with a Gaussian proposal distribution

q(x�|x(i)) = N (x(i), 100)

and a bimodal target distribution

p(x) ∝ 0.3 exp
(−0.2x2

)
+ 0.7 exp

(−0.2(x − 10)2
)

for 5000 iterations. As expected, the histogram of the sam-

CPSC-540: Machine Learning 105

ples approximates the target distribution.

−10 0 10 20
0

0.05

0.1

0.15

i=100

−10 0 10 20
0

0.05

0.1

0.15

i=500

−10 0 10 20
0

0.05

0.1

0.15

i=1000

−10 0 10 20
0

0.05

0.1

0.15

i=5000

In the following class, we will analyse the MH algorithms and

its variants, including the independence sampler, Metropolis

Random Walk, and Gibbs sampler. We will also introduce

particle filtering.

CPSC-540: Machine Learning 106

The transition kernel for the MH algorithm is

KMH(x
(i+1)|x(i)) = q(x(i+1)|x(i))A(x(i), x(i+1))+δx(i)(x

(i+1))r(x(i)),

where r(x(i)) is the term associated with rejection

r(x(i)) = 1 −
∫
X−x(i)

q(x�|x(i))A(x(i), x�)dx�.

� Proof:

CPSC-540: Machine Learning 107

It is fairly easy to prove that the samples generated by

MH algorithm will mimic samples drawn from the target

distribution asymptotically. By construction, KMH satisfies

the detailed balance condition (prove this by substituting

the expression for the MH kernel into the detailed balance

equation)

p(x(i))KMH(x
(i+1)|x(i)) = p(x(i+1))KMH(x

(i)|x(i+1))

and, consequently, the MH algorithm admits p(x) as invari-

ant distribution. To show that the MH algorithm converges,

we need to ensure that there are no cycles (aperiodicity)

and that every state that has positive probability can be

reached in a finite number of steps (irreducibility). Since

the algorithm always allows for rejection, it follows that it is

aperiodic. To ensure irreducibility, we simply need to make

sure that the support of q(·) includes the support of p(·).
Under these conditions, we obtain asymptotic convergence.

CPSC-540: Machine Learning 108

The independent sampler and the Metropolis algorithm

are two simple instances of the MH algorithm. In the inde-

pendent sampler the proposal is independent of the current

state, q(x�|x(i)) = q(x�). Hence, the acceptance probability

is

A(x(i), x�) = min

{
1,

p(x�)q(x(i))

p(x(i))q(x�)

}
= min

{
1,

w(x�)

w(x(i))

}
.

This algorithm is close to importance sampling, but now the

samples are correlated since they result from comparing one

sample to the other.

The Metropolis algorithm assumes a symmetric random walk

proposal q(x�|x(i)) = q(x(i)|x�) and, hence, the acceptance

ratio simplifies to

A(x(i), x�) = min

{
1,

p(x�)

p(x(i))

}
.

CPSC-540: Machine Learning 109

Some properties of the MH algorithm are worth highlighting.

• Firstly, the normalising constant of the target distribu-

tion is not required. We only need to know the target

distribution up to a constant of proportionality.

• Secondly, it is easy to simulate several independent chains

in parallel.

• Lastly, the success or failure of the algorithm often hinges

on the choice of proposal distribution.

Different choices of the proposal standard deviation σ� lead

to very different results. If the proposal is too narrow, only

one mode of p(x) might be visited. On the other hand, if

it is too wide, the rejection rate can be very high, resulting

in high correlations. If all the modes are visited while the

acceptance probability is high, the chain is said to “mix”

well. This is illustrated in the following figure

CPSC-540: Machine Learning 110

Target distribution

MCMC approximation

Markov chain

σ =1 σ =100

σ =10

* *

*

(i) x

CPSC-540: Machine Learning 111

Simulated annealing for global optimization

Let us assume that instead of wanting to approximate p(x),

we want to find its global maximum. For example, if p(x)

is the likelihood or posterior distribution, we often want the

ML and maximum a posteriori (MAP) estimates.

In simulated annealing, one runs a non-homogeneous Markov

chain whose invariant distribution at iteration i is no longer

equal to p(x), but to

pi(x) ∝ p1/Ti(x),

where Ti is a decreasing cooling schedule with limi→∞ Ti = 0.

The reason for doing this is that, under weak regularity as-

sumptions on p(x), p∞(x) is a probability density that con-

centrates itself on the set of global maxima of p(x). The

simulated annealing involves, therefore, just a minor mod-

ification of standard MCMC algorithms as shown by the

following pseudo-code.

CPSC-540: Machine Learning 112

1. Initialise x(0) and set T0 = 1.

2. For i = 0 to N − 1

• Sample u ∼ U[0,1].

• Sample x� ∼ q(x�|x(i)).

• If u < A(x(i), x�) = min
{

1, p
1
Ti (x�)q(x(i)|x�)

p
1
Ti (x(i))q(x�|x(i))

}

x(i+1) = x�

else

x(i+1) = x(i)

• Set Ti+1 according to a chosen cooling schedule.

−10 0 10 20
0

0.1

0.2

i=100

−10 0 10 20
0

0.1

0.2

i=500

−10 0 10 20
0

0.1

0.2

i=1000

−10 0 10 20
0

0.1

0.2

i=5000

CPSC-540: Machine Learning 113

The Gibbs sampler

Suppose we have an n-dimensional vector x and the expres-

sions for the full conditionals p(xj|x1, . . . , xj−1, xj+1, . . . , xn).

In this case, it is often advantageous to use the following pro-

posal distribution for j = 1, . . . , n

q(x�|x(i)) =

 p(x�

j |x(i)
−j) If x�

−j = x
(i)
−j

0 Otherwise.

The corresponding acceptance probability is:

� Proof:

CPSC-540: Machine Learning 114

That is, the acceptance probability for each proposal is one

and, hence, the deterministic scan Gibbs sampler algorithm

is often presented as shown below:

1. Initialise x0,1:n.

2. For i = 0 to N − 1

• Sample x
(i+1)
1 ∼ p(x1|x(i)

2 , x
(i)
3 , . . . , x

(i)
n).

• Sample x
(i+1)
2 ∼ p(x2|x(i+1)

1 , x
(i)
3 , . . . , x

(i)
n).

...

• Sample x
(i+1)
j ∼ p(xj |x(i+1)

1 , . . . , x
(i+1)
j−1 , x

(i)
j+1, . . . , x

(i)
n).

...

• Sample x
(i+1)
n ∼ p(xn|x(i+1)

1 , x
(i+1)
2 , . . . x

(i+1)
n−1).

Since the Gibbs sampler can be viewed as a special case of

the MH algorithm, it is possible to introduce MH steps into

the Gibbs sampler. It is also possible to group variables in

blocks an update them simultaneously.

CPSC-540: Machine Learning 115

Lecture 10 - Neural Networks and

Back-Propagation

OBJECTIVE: In this lecture, we discuss gradient based

optimization for learning nonlinear classification and regres-

sion models.

� GRADIENT DESCENT TECHNIQUES

Searching for a good solution can be interpreted as looking

for a minimum of some error (loss) function in parameter

space.

CPSC-540: Machine Learning 116

�

The gradient is the vector of derivatives:

�E =

(
dE

dθ1
. . .

dE

dθd

)

The gradient vector is orthogonal to the contours.

Hence, to minimise the error, we follow the gradient (the

direction of maximum decrease in error).

CPSC-540: Machine Learning 117

Let’s go back to the linear model Y = Xθ with quadratic

error function E = (Y − Xθ)′(Y − Xθ). The gradient for

this model is:

�

�E =

The gradient descent learning rule, at iteration t, is:

θ(t) = θ(t−1) + α�E

= θ(t−1) + αX ′(Y − Xθ(t−1))

where α is a user-specified learning rate. See the textbook of

Jordan for a convergence proof of this rule. The proof shows

that, under certain regularities on α, θ(∞) = (X ′X)−1X ′Y .

Not surprising!

CPSC-540: Machine Learning 118

In some situations, we might want to learn the parameters

by going over the data on-line:

θ(t) = θ(t−1) + αx(t)(y(t) − x(t)θ(t−1))

This is the least mean squares algorithm. This learn-

ing rule is a stochastic approximation technique also

known as the Robbins-Monro procedure. It’s stochas-

tic because the data is assumed to come from a stochastic

process.

If α decreases with rate 1/n, one can show that this algo-

rithm converges. If the θ vary “slowly” with time, it is also

possible to obtain convergence proofs. Later, we will see that

this algorithm can be exploited to obtain efficient on-line EM

algorithms and adaptive sampling schemes.

CPSC-540: Machine Learning 119

The Newton-Raphson algorithm uses the gradient learn-

ing rule, with the inverse Hessian matrix in place of α:

θ(t) = θ(t−1) + H−1�E

H =
∂2E

∂θ2

� For the linear model we have:

H =

θ(t) = θ(t−1) + H−1�E

Note that α is a scalar, while H is a large matrix. So there

is a trade-off between speed of convergence and storage.

CPSC-540: Machine Learning 120

� ARTIFICIAL NEURAL NETWORKS

Gradient descent techniques allow us to learn complex,

nonlinear models. Assume we are given the data {x1:n, y1:n}
and want to come up with a nonlinear mapping ŷ = f(x, θ),

where θ is obtained my minimising a loss function, say quadratic

E = (y − f(x, θ))′(y − f(x, θ)). Our mapping will be the

artificial neural network (multi-layer perceptron)

depicted below:

Σ

Σ

4

5

6

78

9

y

12

11θ

θ

θ

u

u

θ

θ

θ
Σ

1

o

o

11

12

2

3

θ

θ

θ

x

x
2

1

1

1

1

It can be used to carry out non-linear regression (output

neuron is linear) and nonlinear classification (output neuron

CPSC-540: Machine Learning 121

is sigmoidal). Mathematically, this network is equivalent to:

ŷ = φj (φi (xθj) θi)

where φ(·) is the sigmoidal (logistic) function:

φi (Xθj) =
1

1 + e−Xθj

�

The synaptic weights θ can be learned by following gra-

dients:

θ(t+1) = θ(t) + α(y − ŷ)2
∂ŷ

∂θ(t)

where ŷ = f (x, θ(t)). We proceed to compute the derivatives.

CPSC-540: Machine Learning 122

The output layer mapping is given by:

ŷ = θ1 + θ2o11 + θ3o12

and consequently, the derivatives with respect to the weights

are given by:

�

∂ŷ

∂θ1
=

∂ŷ

∂θ2
=

∂ŷ

∂θ3
=

The hidden layer mapping for the top neuron is:

o11 =
1

1 + exp(−u11)
where u11 = θ4 + θ5x1 + θ6x2

Note that
∂o11

∂u11
= o11(1 − o11)

CPSC-540: Machine Learning 123

� The derivatives with respect to the weights are:

∂ŷ

∂θ4
=

∂ŷ

∂o11

∂o11

∂u11

∂u11

∂θ4

=

∂ŷ

∂θ5
=

∂ŷ

∂θ6
=

The derivatives with respect to the weights of the other hid-

den layer neuron can be calculated following the same proce-

dure, known as back-propagation. Once we have all the

derivatives, we can use either steepest descent or Newton-

Raphson to update the weights.

