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Lecture 2 - Google’s PageRank:
Why math helps

OBJECTIVE: Motivate linear algebra and probability
as important and necessary tools for understanding large
datasets. We also describe the algorithm at the core of the

Google search engine.

<& PAGERANK

Consider the following mini-web of 3 pages (the data):

0.1

The nodes are the webpages and the arrows are links. The
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numbers are the normalised number of links. We can re-write

this directed graph as a transition matrix:

T is a stochastic matrix: its columns add up to 1, so
that
Tij = P(xjlz:)

> Tu=1
J
In information retrieval, we want to know the “relevance” of
each webpage. That is, we want to compute the probability
of each webpage: p(x;) for i =1,2,3.
Let’s start with a random guess 7 = (0.5,0.2,0.3)7 and
“crawl the web” (multiply by T several times). After, say
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N =100, iterations we get:
7'TN = (0.2,0.4,0.4)

We soon notice that no matter what initial ™ we choose, we

always converge to p = (0.2,0.4,0.4)T. So

p'T =
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The distribution p is a measure of the relevance of each page.
Google uses this. But will this work always? When does it

fail?

*

The Perron-Frobenius Theorem tell us that for any
starting point, the chain will converge to the invariant dis-
tribution p, as long as T  is a stochastic transition matrix
that obeys the following properties:

1. Irreducibility: For any state of the Markov chain,

there is a positive probability of visiting all other states.
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That is, the matrix T' cannot be reduced to separate
smaller matrices, which is also the same as stating that

the transition graph is connected.

2. Aperiodicity: The chain should not get trapped in

cycles.

Google’s strategy is to add am matrix of uniform noise E to
T
L=T+¢€E

where € is a small number. L is then normalised. This
ensures irreducibility.

How quickly does this algorithm converge? What determines
the rate of convergence? Again matrix algebra and spectral

theory provide the answers:
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*
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Lecture 3 - The Singular Value
Decomposition (SVD)

OBJECTIVE: The SVD is a matrix factorization that has
many applications: e.g., information retrieval, least-squares

problems, image processing.

<& EIGENVALUE DECOMPOSITION

Let A € R™™. If we put the eigenvalues of A into a
diagonal matrix A and gather the eigenvectors into a matrix

X, then the eigenvalue decomposition of A is given by
A =XAX

But what if A is not a square matrix? Then the SVD comes

to the rescue.
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<& FORMAL DEFINITION OF THE SVD

Given A € R"™*" the SVD of A is a factorization of the
form

A =UxVvT

where u are the left singular vectors, ¢ are the singular

values and v are the right singular vectors.

3 € R™" is diagonal with positive entries (singular values
in the diagonal).

U € R™" with orthonormal columns.

V € R™" with orthonormal columns.

(= V is orthogonal so V7! = VT)

The equations relating the right singular values {v;} and

the left singular vectors {u;} are

AVjIO'jllj j=1,2,...,n
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Le.,

A[vl Vo ... V,L}

g1

02
:[U1 uy ... un}

or AV = UX.




CPSC-540: Machine Learning 11

1. There is no assumption that m > n or that A has full

rank.

2. All diagonal elements of ¥ are non-negative and in non-

increasing order:
012092 ...20

where p = min (m, n)

Theorem 1 FEvery matriz A € R™" has singular value
decomposition A = UXVT

Furthermore, the singular values {o;} are uniquely de-
termined.

If A is square and o; # oj for all i # j, the left singu-
lar vectors {u;} and the right singular vectors {v;} are

uniquely determined to within a factor of 1.
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< EIGENVALUE DECOMPOSITION

Theorem 2 The nonzero singular values of A are the
(positive) square Toots of the nonzero eigenvalues of AT A
or AAT (these matrices have the same nonzero eigenval-

ues).

* Proof:
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<& LOW-RANK APPROXIMATIONS Another way to understand the SVD is to consider how a

|Ax]| matrix may be represented by a sum of rank-one matrices.

Theorem 3 [|All; = o1, where ||Alls = maxy

(Il

max |41 [|AX]. Theorem 4

.,

_ A

A= E oju;v;
j=1

where r is the rank of A.

* Proof:

* Proof:
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What is so useful about this expansion is that the v
partial sum captures as much of the “energy” of A as
possible by a matriz of at most rank-v. In this case, “en-

ergy” is defined by the 2-norm.

Theorem 5 For any v with 0 < v < r define

v
_ —
A, = g oju;v;
j=1

If v = p = min(m,n), define 0,41 = 0.
Then,
A —=Ayl2=0,11
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Lecture 4 - Fun with the SVD

OBJECTIVE: Applications of the SVD to image com-
pression, dimensionality reduction, visualization, informa-

tion retrieval and latent semantic analysis.

<& IMAGE COMPRESSION EXAMPLE

load clown.mat;
figure(1)
colormap(’gray’)

image (A);

[U,8,V] = svd(A);
figure(2)

k = 20;
colormap(’gray’)

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
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The code loads a clown image into a 200 x 320 array A;
displays the image in one figure; performs a singular value
decomposition on A; and displays the image obtained from a
rank-20 SVD approximation of A in another figure. Results

are displayed below:

The original storage requirements for A are 200 - 320 =
64, 000, whereas the compressed representation requires (2004

300 + 1) - 20 & 10, 000 storage locations.
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1+2+3+4

UsOgVs Us%6Vs

Smaller eigenvectors capture high frequency variations (small

brush-strokes).
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<& TEXT RETRIEVAL - LSI If we truncate the approximation to the k-largest singular
The SVD can be used to cluster documents and carry values, we have

out information retrieval by using concepts as opposed to A= UkEng

word-matching. This enables us to surmount the problems S0

of synonymy (car,auto) and polysemy (money bank, river T AqaT
ynonymy ( ) and polysemy (money bank, VI = $UTA

bank). The data is available in a term-frequency matrix
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In English, A is projected to a lower-dimensional space
spanned by the k singular vectors U, (eigenvectors of AAT).
To carry out retrieval, a query q € R" is first projected

to the low-dimensional space:
4 =X, 'Uiq

And then we measure the angle between q;, and the vy
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<& PRINCIPAL COMPONENT ANALYSIS (PCA)

The columns of UX are called the principal compo-
nents of A. We can project high-dimensional data to these
components in order to be able to visualize it. This idea is
also useful for cleaning data as discussed in the previous text

retrieval example.

*
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For example, we can take several 16 x 16 images of the
digit 2 and project them to 2D. The images can be written
as vectors with 256 entries. We then from the matrix A €
R™2% carry out the SVD and truncate it to & = 2. Then
the components U3, are 2 vectors with n data entries. We

can plot these 2D points on the screen to visualize the data.

CPSC-540: Machine Learning

24

-10
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Lecture 5 - Probability Revision

OBJECTIVE: Revise the fundamental concepts of prob-
ability, including marginalization, conditioning, Bayes rule

and expectation.

< PROBABILITY
Probability theory is the formal study of the laws of

chance. It is our tool for dealing with uncertainty. Notation:

e Sample space: is the set € of all outcomes of an

experiment.

e Outcome: what we observed. We use w € € to
denote a particular outcome. e.g. for a die we have
Q = {1,2,3,4,5,6} and w could be any of these six

numbers.

e Event: is a subset of ) that is well defined (measur-

able). e.g. the event A = {even} if w € {2,4,6}
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Why do we need measure?

Frequentist Perspective

Let probability be the frequency of events.
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Axiomatic Perspective

The frequentist interpretation has some shortcomings when

we ask ourselves questions like

e what is the probability that David will sleep with Anne?

o What is the probability that the Panama Canal is

longer than the Suez Canal?

The axiomatic view is a more elegant mathematical solu-
tion. Here, a probabilistic model consists of the triple
(Q, F, P), where ) is the sample space, F is the sigma-field
(collection of measurable events) and P is a function map-
ping F to the interval [0, 1]. That is, with each event A € F
we associate a probability P(A).

Some outcomes are not measurable so we have to assign
probabilities to F and not 2. Fortunately, in this course
everything will be measurable so we need no concern our-
selves with measure theory. We do have to make sure the

following two axioms apply:
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1. P(0) =0 < p(A) < 1= P(Q)

2. For disjoint sets A,, n > 1, we have

(50) - S

If the sets overlap:

P(A+ B)=P(A)+ P(B)— P(AB)
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If the events A and B are independent, we have P(AB) =
P(A)P(B).

* Let P(HIV') =1/500 be the probability of contract-
ing HIV by having unprotected sex. If one has unpro-
tected sex twice, the probability of contracting HIV be-

comes:

What if we have unprotected sex 500 times?
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Conditional Probability

» P(AB)
~ P(B)
where P(A|B) is the conditional probability of A given

P(A|B)

that B occurs, P(B) is the marginal probability of B
and P(AB) is the joint probability of A and B. In

general, we obtain a chain rule

P(Alzn) = P(A7L|A1:71,71)P(An71|A1:n72) e P(A2|A1)P<A1)
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* Assume we have an urn with 3 red balls and 1 blue
ball: U = {r,r,r,b}. What is the probability of drawing

(without replacement) 2 red balls in the first 2 tries?

Marginalisation

Let the sets By., be disjoint and U?’:l B; = Q. Then

P(A) = Z P(A, B))

* Proof:

* What is the probability that the second ball drawn

from our urn will be red?

Bayes Rule

Bayes rule allows us to reverse probabilities:

P(BJA)P(A)

P(AIB) = =5
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Combinining this with marginalisation, we obtain a powerful

tool for statistical modelling:

P(data|model;) P(model;)
Z]\il P(data|model;) P(model,)

P(model;|data) =

That is, if we have prior probabilities for each model and
generative data models, we can compute how likely each
model is a posteriori (in light of our prior knowledge and

the evidence brought in by the data).

Discrete random variables

Let E be a discrete set, eg. EF = {0,1}. A discrete

random variable (r.v.) is a map from 2 to E:

X(w):Q— E
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such that for all x € E we have {w|X (w) < z} € F. Since
F denotes the measurable sets, this condition simply says

that we can compute (measure) the probability P(X = x).

* Assume we are throwing a die and are interested in
the events E = {even, odd}. Here Q = {1,2,3,4,5,6}.
The r.v. takes the value X (w) = even if w € {2,4,6}
and X (w) = odd if w € {1,3,5}. We describe this r.v.
with a probability distribution p(x;) = P(X =

The cumulative distribution function is defined as

F(z) = P(X < z) and would for this example be:
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*

Bernoulli Random Variables

Let E={0,1}, P(X =1)=X and P(X =0)=1—\.
We now introduce the set indicator variable. (This is a very
useful notation.)

1 af w € A;

I4(w) =
0 otherwise.

Using this convention, the probability distribution of a Bernoulli

random variable reads:

plz) = )\Hm(x)(l _ /\)H{o}(f).
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Expectation of Discrete Random Variables
The expectation of a discrete random variable X is
E[X] =) zip(x;)
E

The expectation operator is linear, so E(az+bxs) = aE(z1)+

bE(x2). In general, the expectation of a function f(X) is

E[f(X)] = Z f(@i) plai)

Mean: ;= E(X)
Variance: o> £ E[(X — p)?]
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* For the set indicator variable I4(w),

Ell4(w)] =
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Continuous Random Variables

A continuous r.v. is a map to a continuous space, X (w) :
Q2 — R, under the usual measurability conditions. The cu-

mulative distribution function F(z) (cdf) is defined

by

T

Fx) £ /p(y)dy: P(X <ux)

—00

where p(x) denotes the probability density function
(pdf). For an infinitesimal measure dz in the real line, dis-

tributions F' and densities p are related as follows:

F(dx) = p(z)dz = P(X € dx).
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Univariate Gaussian Distribution

The pdf of a Gaussian distribution is given by

_ 12
1, (Iu>.

plr) = Vono? 207

Our short notation for Gaussian variables is X ~ N (p, o?).
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Univariate Uniform Distribution

A random variable X with a uniform distribution between

0 to 1 is written as X ~ Ujp ()

Multivariate Distributions

Let f(u,v) be a pdf in 2-D. The cdf is defined by

F(fv,y)zfx fyf(u,v)dudva(Xgm,YSy).

—00 —00
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1 Bivariate Uniform Distribution

X ~ U[O,l]Q(l‘)

Multivariate Gaussian Distribution

Let « € R™. The pdf of an n-dimensional Gaussian is given

by

1 1 Ty-1
_ —5(z—p)t S (x—p)
plz) = 27rn/2|2|1/28 ’
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where
f E(z1)
‘LL = =
Hn E(In)
and
011 *Oln
so| | =B - - )
Onl " Onn

with o5 = E[X; — ;) (X; — py)7).

We can interpret each component of x, for example, as
a feature of an image such as colour or texture. The term
Ha—p) TS (z—p) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and p.




CPSC-540: Machine Learning 43

* What is [ --- fe’%(””’”)Tzfl(””’“) dx?

Linear Operations

Let A € R b € RF be given matrices, and X € R”
be a random variable with mean E(X) = p, € R" and
covariance cov(X) = Xy € R™™. We define a new random

variable

Y=AX+b

If X ~ N(py, %), then Y ~ N(p,,3,) where
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*
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Finally, we define the cross-covariance as

Yxy = B(X — px)(Y — py)'].

X and Y are uncorrelated if X xy = 0. So,

Yxx O
0 Xyy

=
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Lecture 6 - Linear Supervised Learn-
ing

OBJECTIVE: Linear regression is a supervised learn-

ing task. It is of great interest because:

o Many real processes can be approximated with linear

models.
e Linear regression appears as part of larger problems.
e [t can be solved analytically.

o [t illustrates many of the ideas in machine learning.
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Given the data {x1.,, y1.,}, with z; € R? and y; € R, we

want to fit a hyper-plane that maps x to y.

*

Mathematically, the linear model is expressed as follows:

d
@\7; = 90 + Z 1'7;]'9]'
j=1

We let z; 9 = 1 to obtain

d
Yi = E xijej
Jj=0
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In matrix form, this expression is

Y = X0
Y1 T *+r Tid B
Yn Tno **° Tnd 9d

If we have several outputs y; € R our linear regression

expression becomes:

*

We will present several approaches for computing 6.
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< OPTIMIZATION APPROACH

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

cO) = (Y — X0y — X0)
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We will need the following result from matrix differentia-

tion: % = AT,
*
oc _
06

These are the normal equations. The solution (esti-
mate) is:

-
The corresponding predictions are

Y = HY =

where H is the “hat” matrix.
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<& GEOMETRIC APPROACH
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X'y —Y)

Maximum Likelihood
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If our errors are Gaussian distributed, we can use the model
Y = X0+ N(0,0%)

Note that the mean of Y is X6 and that its variance is
o?I. So we can equivalently write this expression using the

probability density of Y given X, 0 and o:

pYX,0,0) = (27ra2)_"/2 oo (Y =XO)T(Y=X6)

The maximum likelihood (ML) estimate of 6 is obtained by
taking the derivative of the log-likelihood, logp(Y'| X, 8, o).
The idea of maximum likelihood learning is to maximise the
likelihood of seeing some data Y by modifying the parame-

ters (6, 0).
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The ML estimate of 0 is:

*
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Proceeding in the same way, the ML estimate of ¢ is:

*
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Lecture 7 - Ridge Regression

OBJECTIVE: Here we learn a cost function for linear
supervised learning that is more stable than the one in the
previous lecture. We also introduce the very important no-
tion of regularization.

All the answers so far are of the form
§=(xxT)'xTy

They require the inversion of X X7 This can lead to prob-
lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:
0= (XX"+61)"'XTY

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

CH) =Y - X0)'(Y — X0)+ %709
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* Proof:

It is useful to visualise the quadratic optimisation function

and the constraint region.
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*

That is, we are solving the following constrained opti-
misation problem:

, i {(Y - X0)"(Y - x0)}
Large values of 6 are penalised. We are shrinking 0 towards
zero. This can be used to carry out feature weighting.
An input z;, weighted by a small §; will have less

influence on the ouptut y;.
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Spectral View of LS and Ridge Regression

Again, let X € R™*“ be factored as

d
X =0V =Y won!,
i=1

where we have assumed that the rank of X is d.

* The least squares prediction is:

d
YLSZ E ULULTY
i=1

* Likewise, for ridge regression we have:

i 2
Yiidge = E ! Y
riage — 0_72 + 52 (et}
i= !

The filter factor

o2

9
i o2 + 42

penalises small values of o2 (they go to zero at a faster rate).
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*

Also, by increasing 62 we are penalising the weights:

*
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Small eigenvectors tend to be wobbly. The Ridge filter fac-
tor f; gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).

The smoothness parameter 62 is often estimated by cross-

validation or Bayesian hierarchical methods.

Minimax and cross-validation

Cross-validation is a widely used technique for choosing é.

Here's an example:

*
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Lecture 8 - Maximum Likelihood

and Bayesian Learning

OBJECTIVE: In this chapter, we revise maximum like-
lihood (ML) for a simple binary model. We then introduce
Bayesian learning for this simple model and for the linear-
Gaussian regression setting of the previous chapters. The key
difference between the two approaches is that the frequentist
view assumes there is one true model responsible for the ob-
servations, while the Bayesian view assumes that the model
is a random variable with a certain prior distribution. Com-
putationally, the ML problem is one of optimization, while

Bayesian learning is one of integration.

<& MAXIMUM LIKELIHOOD
Frequentist Learning assumes that there is a true model
(say a parametric model with parameters ). The estimate

is denoted 8. It can be found by maximising the likelihood:
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*

f = arg max p(x1.0]0)
0

For identical and independent distributed
(iid.) data:

p(xlznle) =

L(0) = logp(x1.,|0) =

Let’s illustrate this with a coin-tossing example.
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* Let @1, with z; € {0, 1}, be i.i.d. Bernoulli:

plarals) = [ plailo)

With m £ Y z;, we have

L(0) =

Differentiating, we get
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< BAYESIAN LEARNING
Given our prior knowledge p(#) and the data model p(-|6),
the Bayesian approach allows us to update our prior using
the new data x1., as follows:

p(x1:|0)p(0)

POk = )

where p(0|x1.,) is the posterior distribution, p(x.,|0)
is the likelihood and p(xy.,) is the marginal likelihood

(evidence). Note

plz1,) = / p(1:0]0)p(6)dO
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Bayesian Prediction

We predict by marginalising over the posterior of the para-

meters

p(x71+1|$1:n) = /p($n+179|x1:n)d9

/ D(ns1|6)p(Ol1.,)d6

Bayesian Model Selection

For a particular model structure M;, we have

p(l'l:nwa Mz)p(9|Ml)
p(z1q| M)

p(9|$1:n,Mi) =

Models are selected according to their posterior:

P(M;j|w1.) o< P10 M;)p(M;) = P(Mi)/P(I1:n|‘97Mz‘)P(9|M1:)d9

The ratio P(z1.,|M;)/P(x1.,|M;) is known as the Bayes

Factor.
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* Let @1, with x; € {0,1}, be i.i.d. Bernoulli: z; ~
B(1,0)

-le n|9 Hp xlle Hm - )nfm
Let us Choose the following Beta prior distribution:

p(0) = Weﬂ*a gy

where I' denotes the Gamma-function. For the time
being, a and @ are fixed hyper-parameters. The

posterior distribution is proportional to:

p(f]z)

with normalisation constant
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Since the posterior is also Beta, we say that the Beta prior
is conjugate with respect to the binomial likelihood. Con-

jugate priors lead to the same form of posterior.

Different hyper-parameters of the Beta Be(a, ) distribution

give rise to different prior specifications:
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The generalisation of the Beta distribution is the Dirichlet

distribution D(c;), with density

k
p(6) < [ ] 67
i=1

where we have assumed k possible thetas. Note that the
Dirichlet distribution is conjugate with respect

to a Multinomial likelihood.
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<& BAYESIAN LEARNING FOR LINEAR-GAUSSIAN MOD-
ELS
In the Bayesian linear prediction setting, we focus on com-

puting the posterior:

p(O|X,Y) o< p(Y[X,0)p(0)

_ (27r0’2)_% e—#(Y—X&)T(Y—XG)pw)

We often want to maximise the posterior — that is, we look
for the mazimum a poteriori (MAP) estimate. In this case,
the choice of prior determines a type of constraint! For ex-

ample, consider a Gaussian prior 6 ~ N(0,5%0%1;). Then

p(0|X,Y) o (27m07) g (V= XOT(V-X0) (2m0°6%) - e aa? !

Our task is to rearrange terms in the exponents in order to

obtain a simple expression for the posterior distribution.
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*
1 1 -1
-5 ——5(0—p) M—(0—
p(0|X,Y) = ‘27T0’2M’ 2 320 =)
n 1 T d 1 _gT
-3 —— (Y -X0)'(Y-X0 -5 - 010
x (27?02) 2 ¢ 302 a )(27r0252) Ze 2022
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So the posterior for 6 is Gaussian:
POX,Y) = [oroPh| F a0
with sufficient statistics:

EO|X,Y) = (XXT +6721)' XY
var(0|X,Y) = (XXT + 6721 o?

The MAP point estimate is:
Ouap = (XXT+06720)"'XTY

It is the same as the ridge estimate (except for a trivial
negative sign in the exponent of ¢), which results from the
Ly constraint. A flat (“vague”) prior with large variance

(large 9) leads to the ML estimate.

o~ o~ (52*}0 o~ o~ o~
Ovap = Origge — Oy =0svp =015
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2 Full Bayesian Model
In Bayesian inference, we're interested in the full posterior:
p(0,0%,6°|X,Y) o p(Y]0, 0%, X)p(6]0®, 8%)p(0”)p(5)

where

2

Y1(0,0% X ~ N(X0,0°I,)
0 ~ N(0,(0°6°1,))
o’ ~ IG(a/2,b/2)
6% ~ IG (a, )

2

where ZG (o, 3) denotes the Inverse-Gamma distribu-

tion.

BY g —a—
8 ~IG = 10%(6%) 70 g o (62
(., 8) ) (6%) 0,00)(67)
This is the conjugate prior for the variance of a
Gaussian. The generalization of the Gamma distribution,

i.e. the conjugate prior of a covariance matrix is the inverse
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Wishart distribution ¥ ~ IW;(«, a¥*), admitting the

density
p(S]a, ) o |22 exp{—(1/2)tr(aX ST}

We can visualise our hierarchical model with the following

graphical model:

*
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The product of likelihood and priors is:

_n 1 y_ Ty
p(0,0%,0*|X,Y) < (2m0”) e g2V~ X0 (Y =X0)
d

X (27r0252)T B_W%ZQTH

s
% (02)7(1/27167%;(52)7@71673;

We know from our previous work on computing the posterior

for 6 that:
p(0,0%. 2|X,Y) x (2m0?) 2 22" Y
5 (27m262)7(1/267#(07@%1*1(97”)

Je]
> (0_2)7(1/2716*#; (52)701716*67
where

M1 = XTX +62%,
w = MXTY
P=1I,—XMX"
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From this expression, it is now obvious that
p(0lo?, X,Y) = N(p, 0> M)

Next, we integrate p(, 02, 6%|X,Y) over # in order to get
an expression for p(o?, 6%/ X,Y). This will allow us to get

an expression for the marginal posterior p(o?|X,Y).

*

p(02|X Y) ~ TG (a+n b-‘rY/PY)

2 7 2
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Integrating over o2 gives us an expression for p(6%/X,Y)

Unfortunately this is a nonstandard distribution, thus mak-
ing it hard for us to come up with the normalizing constant.

So we’'ll make use of the fact that we know 6 and o2 to derive




CPSC-540: Machine Learning

79

a conditional distribution p(6%]0, 02, X,Y).

* We know that:
p(0, 0%, 8*1X,Y) o (27r02)7% o 2z (Y =XOT (Y -X0)
d
x (2m0?6%) 2 Ll

y (02)751/2716—#(52)7%16—

RN
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In summary, we can
e Obtain p(f|o?, 6%, X,Y) analytically.
e Obtain p(0?|6%, X,Y) analytically.
e Derive an expression for p(6%]6, 0%, X,Y).

Given 6%, we can obtain analytical expressions for  and
o®. But, let’s be a bit more ambitious. Imagine we could
run the following sampling algorithm (known as the Gibbs

Sampler)
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*
1. LOAD data (X, Y).
2. Compute XTY and XTX.
3. Set,eg,a=b=0,a=2and g = 10.
4. Sample %) ~ ZG (a, B).
5. FORi=1to N:
(a) Compute M, P and p) using §20-1.
(

i b+Y'PY
b) Sample 02() ~ ITG (’”T”, %)

)
)

(c) Sample 8@ ~ N (ul), a2O M)
)

() Sample 020 ~ TG (44, B+ L140).

We can use these samples in order to approximate the inte-

grals of interest with Monte Carlo averages.
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For example, the predictive distribution
p(yn+1 |X1:n+17 Y) = /p(ynJrl |67 027 -Z'nJrl)p(ea 027 62|X7 Y)deO'Zd(SQ

can be approximated with:

N

1 . y
Z p(yn+1 Iema 0'2([)7 xn—o—l)

ﬁ(y”+1|Xl:n+l7Y) = N 2

That is,

*

ﬁ(yn+1|X1:n+17 Y) =

In the next lecture, we will derive the theory that justifies
the use of this algorithm as well a many other Moonte Carlo

algorithms.




