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Lecture 2 - Google’s PageRank:

Why math helps

OBJECTIVE: Motivate linear algebra and probability

as important and necessary tools for understanding large

datasets. We also describe the algorithm at the core of the

Google search engine.

� PAGERANK

Consider the following mini-web of 3 pages (the data):
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The nodes are the webpages and the arrows are links. The
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numbers are the normalised number of links. We can re-write

this directed graph as a transition matrix:

�

T is a stochastic matrix: its columns add up to 1, so

that

Ti,j = P (xj|xi)∑
j

Ti,j = 1

In information retrieval, we want to know the “relevance” of

each webpage. That is, we want to compute the probability

of each webpage: p(xi) for i = 1, 2, 3.

Let’s start with a random guess π = (0.5, 0.2, 0.3)T and

“crawl the web” (multiply by T several times). After, say

CPSC-540: Machine Learning 4

N = 100, iterations we get:

πTTN = (0.2, 0.4, 0.4)

We soon notice that no matter what initial π we choose, we

always converge to p = (0.2, 0.4, 0.4)T . So

�

pTT =

�
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The distribution p is a measure of the relevance of each page.

Google uses this. But will this work always? When does it

fail?

�

The Perron-Frobenius Theorem tell us that for any

starting point, the chain will converge to the invariant dis-

tribution p, as long as T is a stochastic transition matrix

that obeys the following properties:

1. Irreducibility: For any state of the Markov chain,

there is a positive probability of visiting all other states.
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That is, the matrix T cannot be reduced to separate

smaller matrices, which is also the same as stating that

the transition graph is connected.

2. Aperiodicity: The chain should not get trapped in

cycles.

Google’s strategy is to add am matrix of uniform noise E to

T :

L = T + εE

where ε is a small number. L is then normalised. This

ensures irreducibility.

How quickly does this algorithm converge? What determines

the rate of convergence? Again matrix algebra and spectral

theory provide the answers:
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�

CPSC-540: Machine Learning 8

Lecture 3 - The Singular Value

Decomposition (SVD)

OBJECTIVE: The SVD is a matrix factorization that has

many applications: e.g., information retrieval, least-squares

problems, image processing.

� EIGENVALUE DECOMPOSITION

Let A ∈ R
m×m. If we put the eigenvalues of A into a

diagonal matrix Λ and gather the eigenvectors into a matrix

X, then the eigenvalue decomposition of A is given by

A = XΛX−1.

But what if A is not a square matrix? Then the SVD comes

to the rescue.
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� FORMAL DEFINITION OF THE SVD

Given A ∈ R
m×n, the SVD of A is a factorization of the

form

A = UΣVT

where u are the left singular vectors, σ are the singular

values and v are the right singular vectors.

Σ ∈ R
n×n is diagonal with positive entries (singular values

in the diagonal).

U ∈ R
m×n with orthonormal columns.

V ∈ R
n×n with orthonormal columns.

(⇒ V is orthogonal so V−1 = VT )

The equations relating the right singular values {vj} and

the left singular vectors {uj} are

Avj = σjuj j = 1, 2, . . . , n
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i.e.,

A
[

v1 v2 . . . vn

]

=
[

u1 u2 . . . un

]


σ1

σ2

. . .

σn


or AV = UΣ.

�
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1. There is no assumption that m ≥ n or that A has full

rank.

2. All diagonal elements of Σ are non-negative and in non-

increasing order:

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

where p = min (m,n)

Theorem 1 Every matrix A ∈ R
m×n has singular value

decomposition A = UΣVT

Furthermore, the singular values {σj} are uniquely de-

termined.

If A is square and σi �= σj for all i �= j, the left singu-

lar vectors {uj} and the right singular vectors {vj} are

uniquely determined to within a factor of ±1.
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� EIGENVALUE DECOMPOSITION

Theorem 2 The nonzero singular values of A are the

(positive) square roots of the nonzero eigenvalues of ATA

or AAT (these matrices have the same nonzero eigenval-

ues).

� Proof:
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� LOW-RANK APPROXIMATIONS

Theorem 3 ‖A‖2 = σ1, where ‖A‖2 = maxx �=0
‖Ax‖
‖x‖ =

max‖x‖�=1 ‖Ax‖.

� Proof:
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Another way to understand the SVD is to consider how a

matrix may be represented by a sum of rank-one matrices.

Theorem 4

A =

r∑
j=1

σjujv
T
j

where r is the rank of A.

� Proof:
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What is so useful about this expansion is that the νth

partial sum captures as much of the “energy” of A as

possible by a matrix of at most rank-ν. In this case, “en-

ergy” is defined by the 2-norm.

Theorem 5 For any ν with 0 ≤ ν ≤ r define

Aν =

ν∑
j=1

σjujv
T
j

If ν = p = min(m,n), define σν+1 = 0.

Then,

‖A − Aν‖2 = σν+1
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Lecture 4 - Fun with the SVD

OBJECTIVE: Applications of the SVD to image com-

pression, dimensionality reduction, visualization, informa-

tion retrieval and latent semantic analysis.

� IMAGE COMPRESSION EXAMPLE

load clown.mat;

figure(1)

colormap(’gray’)

image(A);

[U,S,V] = svd(A);

figure(2)

k = 20;

colormap(’gray’)

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
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The code loads a clown image into a 200 × 320 array A;

displays the image in one figure; performs a singular value

decomposition on A; and displays the image obtained from a

rank-20 SVD approximation of A in another figure. Results

are displayed below:
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The original storage requirements for A are 200 · 320 =

64, 000, whereas the compressed representation requires (200+

300 + 1) · 20 ≈ 10, 000 storage locations.
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Smaller eigenvectors capture high frequency variations (small

brush-strokes).
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� TEXT RETRIEVAL - LSI

The SVD can be used to cluster documents and carry

out information retrieval by using concepts as opposed to

word-matching. This enables us to surmount the problems

of synonymy (car,auto) and polysemy (money bank, river

bank). The data is available in a term-frequency matrix

�
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If we truncate the approximation to the k-largest singular

values, we have

A = UkΣkV
T
k

So

VT
k = Σ−1

k UT
k A

�
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In English, A is projected to a lower-dimensional space

spanned by the k singular vectors Uk (eigenvectors of AAT ).

To carry out retrieval, a query q ∈ R
n is first projected

to the low-dimensional space:

q̂k = Σ−1
k UT

k q

And then we measure the angle between q̂k and the vk.

�
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� PRINCIPAL COMPONENT ANALYSIS (PCA)

The columns of UΣ are called the principal compo-

nents of A. We can project high-dimensional data to these

components in order to be able to visualize it. This idea is

also useful for cleaning data as discussed in the previous text

retrieval example.

�
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For example, we can take several 16 × 16 images of the

digit 2 and project them to 2D. The images can be written

as vectors with 256 entries. We then from the matrix A ∈
R

n×256, carry out the SVD and truncate it to k = 2. Then

the components UkΣk are 2 vectors with n data entries. We

can plot these 2D points on the screen to visualize the data.

�
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Lecture 5 - Probability Revision

OBJECTIVE: Revise the fundamental concepts of prob-

ability, including marginalization, conditioning, Bayes rule

and expectation.

� PROBABILITY

Probability theory is the formal study of the laws of

chance. It is our tool for dealing with uncertainty. Notation:

• Sample space: is the set Ω of all outcomes of an

experiment.

• Outcome: what we observed. We use ω ∈ Ω to

denote a particular outcome. e.g. for a die we have

Ω = {1, 2, 3, 4, 5, 6} and ω could be any of these six

numbers.

• Event: is a subset of Ω that is well defined (measur-

able). e.g. the event A = {even} if w ∈ {2, 4, 6}
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Why do we need measure?

�

Frequentist Perspective

Let probability be the frequency of events.

�
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Axiomatic Perspective

The frequentist interpretation has some shortcomings when

we ask ourselves questions like

• what is the probability that David will sleep with Anne?

• What is the probability that the Panama Canal is

longer than the Suez Canal?

The axiomatic view is a more elegant mathematical solu-

tion. Here, a probabilistic model consists of the triple

(Ω,F , P ), where Ω is the sample space, F is the sigma-field

(collection of measurable events) and P is a function map-

ping F to the interval [0, 1]. That is, with each event A ∈ F
we associate a probability P (A).

Some outcomes are not measurable so we have to assign

probabilities to F and not Ω. Fortunately, in this course

everything will be measurable so we need no concern our-

selves with measure theory. We do have to make sure the

following two axioms apply:
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1. P (∅) = 0 ≤ p(A) ≤ 1 = P (Ω)

2. For disjoint sets An, n ≥ 1, we have

P

( ∞∑
n=1

An

)
=

∞∑
n=1

P (An)

�

If the sets overlap:

�

P (A + B) = P (A) + P (B) − P (AB)
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If the events A and B are independent, we have P (AB) =

P (A)P (B).

� Let P (HIV ) = 1/500 be the probability of contract-

ing HIV by having unprotected sex. If one has unpro-

tected sex twice, the probability of contracting HIV be-

comes:

What if we have unprotected sex 500 times?
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Conditional Probability

P (A|B) � P (AB)

P (B)

where P (A|B) is the conditional probability of A given

that B occurs, P (B) is the marginal probability of B

and P (AB) is the joint probability of A and B. In

general, we obtain a chain rule

P (A1:n) = P (An|A1:n−1)P (An−1|A1:n−2) . . . P (A2|A1)P (A1)
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� Assume we have an urn with 3 red balls and 1 blue

ball: U = {r, r, r, b}. What is the probability of drawing

(without replacement) 2 red balls in the first 2 tries?

Marginalisation

Let the sets B1:n be disjoint and
⋃n

i=1 Bi = Ω. Then

P (A) =

n∑
i=1

P (A,Bi)
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� Proof:

� What is the probability that the second ball drawn

from our urn will be red?

Bayes Rule

Bayes rule allows us to reverse probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
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Combinining this with marginalisation, we obtain a powerful

tool for statistical modelling:

P (modeli|data) =
P (data|modeli)P (modeli)∑M

j=1 P (data|modelj)P (modelj)

That is, if we have prior probabilities for each model and

generative data models, we can compute how likely each

model is a posteriori (in light of our prior knowledge and

the evidence brought in by the data).

Discrete random variables

Let E be a discrete set, e.g. E = {0, 1}. A discrete

random variable (r.v.) is a map from Ω to E:

X(w) : Ω 
→ E
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such that for all x ∈ E we have {w|X(w) ≤ x} ∈ F . Since

F denotes the measurable sets, this condition simply says

that we can compute (measure) the probability P (X = x).

� Assume we are throwing a die and are interested in

the events E = {even, odd}. Here Ω = {1, 2, 3, 4, 5, 6}.
The r.v. takes the value X(w) = even if w ∈ {2, 4, 6}
and X(w) = odd if w ∈ {1, 3, 5}. We describe this r.v.

with a probability distribution p(xi) = P (X =

xi) = 1
2, i = 1, . . . , 2

The cumulative distribution function is defined as

F (x) = P (X ≤ x) and would for this example be:
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�

Bernoulli Random Variables

Let E = {0, 1}, P (X = 1) = λ, and P (X = 0) = 1 − λ.

We now introduce the set indicator variable. (This is a very

useful notation.)

IA(w) =

 1 if w ∈ A;

0 otherwise.

Using this convention, the probability distribution of a Bernoulli

random variable reads:

p(x) = λI{1}(x)(1 − λ)I{0}(x).
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Expectation of Discrete Random Variables

The expectation of a discrete random variable X is

E[X ] =
∑
E

xip(xi)

The expectation operator is linear, so E(ax1+bx2) = aE(x1)+

bE(x2). In general, the expectation of a function f(X) is

E[f (X)] =
∑
E

f(xi) p(xi)

Mean: µ � E(X)

Variance: σ2 � E[(X − µ)2]



CPSC-540: Machine Learning 37

� For the set indicator variable IA(ω),

E[IA(ω)] =
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Continuous Random Variables

A continuous r.v. is a map to a continuous space, X(w) :

Ω 
→ R, under the usual measurability conditions. The cu-

mulative distribution function F (x) (cdf) is defined

by

F (x) �
x∫

−∞
p(y) dy = P (X ≤ x)

where p(x) denotes the probability density function

(pdf). For an infinitesimal measure dx in the real line, dis-

tributions F and densities p are related as follows:

F (dx) = p(x)dx = P (X ∈ dx).

�
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Univariate Gaussian Distribution

The pdf of a Gaussian distribution is given by

p(x) = 1√
2πσ2e

− 1
2σ2 (x−µ)2

.

�

Our short notation for Gaussian variables is X ∼ N (µ, σ2).
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Univariate Uniform Distribution

A random variable X with a uniform distribution between

0 to 1 is written as X ∼ U[0,1](x)

�

Multivariate Distributions

Let f (u, v) be a pdf in 2-D. The cdf is defined by

F (x, y) =
x∫

−∞

y∫
−∞

f (u, v) du dv = P (X ≤ x, Y ≤ y).
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1 Bivariate Uniform Distribution

X ∼ U[0,1]2(x)

�

Multivariate Gaussian Distribution

Let x ∈ R
n. The pdf of an n-dimensional Gaussian is given

by

p(x) =
1

2πn/2|Σ|1/2e
−1

2(x−µ)T Σ−1(x−µ)
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where

µ =


µ1

:

µn

 =


E(x1)

:

E(xn)


and

Σ =


σ11 · · ·σ1n

· · ·
σn1 · · ·σnn

 = E[(X − µ)(X − µ)T ]

with σij = E[Xi − µi)(Xj − µj)
T ].

We can interpret each component of x, for example, as

a feature of an image such as colour or texture. The term

1
2(x−µ)TΣ−1(x−µ) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and µ.
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� What is
∫ ··· ∫ e−

1
2(x−µ)T Σ−1(x−µ) dx?

Linear Operations

Let A ∈ R
k×n, b ∈ R

k be given matrices, and X ∈ R
n

be a random variable with mean E(X) = µx ∈ R
n and

covariance cov(X) = ΣX ∈ R
n×n. We define a new random

variable

Y = AX + b

If X ∼ N(µx, Σx), then Y ∼ N(µy, Σy) where
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�

µy = E(Y ) =

Σy =
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Finally, we define the cross-covariance as

ΣXY = E[(X − µX)(Y − µY )′].

X and Y are uncorrelated if ΣXY = 0. So,

Σ =

ΣXX 0

0 ΣY Y

 .
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Lecture 6 - Linear Supervised Learn-

ing

OBJECTIVE: Linear regression is a supervised learn-

ing task. It is of great interest because:

• Many real processes can be approximated with linear

models.

• Linear regression appears as part of larger problems.

• It can be solved analytically.

• It illustrates many of the ideas in machine learning.
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Given the data {x1:n, y1:n}, with xi ∈ R
d and yi ∈ R, we

want to fit a hyper-plane that maps x to y.

�

Mathematically, the linear model is expressed as follows:

ŷi = θ0 +

d∑
j=1

xijθj

We let xi,0 = 1 to obtain

ŷi =

d∑
j=0

xijθj
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In matrix form, this expression is

Ŷ = Xθ


y1

...

yn

 =


x10 · · · x1d

... ... ...

xn0 · · · xnd




θ0

...

θd



If we have several outputs yi ∈ R
c, our linear regression

expression becomes:

�

We will present several approaches for computing θ.



CPSC-540: Machine Learning 49

� OPTIMIZATION APPROACH

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

C(θ) = (Y − Xθ)T (Y − Xθ)

�
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We will need the following result from matrix differentia-

tion: ∂A
∂θ = AT .

�
∂C

∂θ
=

These are the normal equations. The solution (esti-

mate) is:

θ̂ =

The corresponding predictions are

Ŷ = HY =

where H is the “hat” matrix.
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� GEOMETRIC APPROACH

�

XT (Y − Ŷ ) =
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Maximum Likelihood

�
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If our errors are Gaussian distributed, we can use the model

Y = Xθ + N (0, σ2I)

Note that the mean of Y is Xθ and that its variance is

σ2I . So we can equivalently write this expression using the

probability density of Y given X , θ and σ:

p(Y |X, θ, σ) =
(
2πσ2

)−n/2
e
− 1

2σ2 (Y −Xθ)T (Y −Xθ)

The maximum likelihood (ML) estimate of θ is obtained by

taking the derivative of the log-likelihood, log p(Y |X, θ, σ).

The idea of maximum likelihood learning is to maximise the

likelihood of seeing some data Y by modifying the parame-

ters (θ, σ).
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The ML estimate of θ is:

�
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Proceeding in the same way, the ML estimate of σ is:

�
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Lecture 7 - Ridge Regression

OBJECTIVE: Here we learn a cost function for linear

supervised learning that is more stable than the one in the

previous lecture. We also introduce the very important no-

tion of regularization.

All the answers so far are of the form

θ̂ = (XXT )−1XTY

They require the inversion of XXT . This can lead to prob-

lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:

θ̂ = (XXT + δ2Id)
−1XTY

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

C(θ) = (Y − Xθ)T (Y − Xθ) + δ2θTθ
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� Proof:

It is useful to visualise the quadratic optimisation function

and the constraint region.
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�

That is, we are solving the following constrained opti-

misation problem:

min
θ : θT θ ≤ t

{
(Y − Xθ)T (Y − Xθ)

}
Large values of θ are penalised. We are shrinking θ towards

zero. This can be used to carry out feature weighting.

An input xi,d weighted by a small θd will have less

influence on the ouptut yi.
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Spectral View of LS and Ridge Regression

Again, let X ∈ R
n×d be factored as

X = UΣV T =

d∑
i=1

uiσiv
T
i ,

where we have assumed that the rank of X is d.

� The least squares prediction is:

ŶLS =

d∑
i=1

uiu
T
i Y
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� Likewise, for ridge regression we have:

Ŷridge =

d∑
i=1

σ2
i

σ2
i + δ2

uiu
T
i Y

The filter factor

fi =
σ2

i

σ2
i + δ2

penalises small values of σ2 (they go to zero at a faster rate).
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�

Also, by increasing δ2 we are penalising the weights:

�
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Small eigenvectors tend to be wobbly. The Ridge filter fac-

tor fi gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).

The smoothness parameter δ2 is often estimated by cross-

validation or Bayesian hierarchical methods.

Minimax and cross-validation

Cross-validation is a widely used technique for choosing δ.

Here’s an example:

�
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Lecture 8 - Maximum Likelihood

and Bayesian Learning

OBJECTIVE: In this chapter, we revise maximum like-

lihood (ML) for a simple binary model. We then introduce

Bayesian learning for this simple model and for the linear-

Gaussian regression setting of the previous chapters. The key

difference between the two approaches is that the frequentist

view assumes there is one true model responsible for the ob-

servations, while the Bayesian view assumes that the model

is a random variable with a certain prior distribution. Com-

putationally, the ML problem is one of optimization, while

Bayesian learning is one of integration.

� MAXIMUM LIKELIHOOD

Frequentist Learning assumes that there is a true model

(say a parametric model with parameters θ0). The estimate

is denoted θ̂. It can be found by maximising the likelihood:
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�

θ̂ = arg max
θ

p(x1:n|θ)

For identical and independent distributed

(i.i.d.) data:

p(x1:n|θ) =

L(θ) = log p(x1:n|θ) =

Let’s illustrate this with a coin-tossing example.
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� Let x1:n, with xi ∈ {0, 1}, be i.i.d. Bernoulli:

p(x1:n|θ) =

n∏
i=1

p(xi|θ)

With m �
∑

xi, we have

L(θ) =

Differentiating, we get
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� BAYESIAN LEARNING

Given our prior knowledge p(θ) and the data model p(·|θ),

the Bayesian approach allows us to update our prior using

the new data x1:n as follows:

p(θ|x1:n) =
p(x1:n|θ)p(θ)

p(x1:n)

where p(θ|x1:n) is the posterior distribution, p(x1:n|θ)

is the likelihood and p(x1:n) is the marginal likelihood

(evidence). Note

p(x1:n) =

∫
p(x1:n|θ)p(θ)dθ

�
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Bayesian Prediction

We predict by marginalising over the posterior of the para-

meters

p(xn+1|x1:n) =

∫
p(xn+1, θ|x1:n)dθ

=

∫
p(xn+1|θ)p(θ|x1:n)dθ

Bayesian Model Selection

For a particular model structure Mi, we have

p(θ|x1:n,Mi) =
p(x1:n|θ,Mi)p(θ|Mi)

p(x1:n|Mi)

Models are selected according to their posterior:

P (Mi|x1:n) ∝ P (x1:n|Mi)p(Mi) = P (Mi)

∫
p(x1:n|θ, Mi)p(θ|Mi)dθ

The ratio P (x1:n|Mi)/P (x1:n|Mj) is known as the Bayes

Factor.
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� Let x1:n, with xi ∈ {0, 1}, be i.i.d. Bernoulli: xi ∼
B(1, θ)

p(x1:n|θ) =

n∏
i=1

p(xi|θ) = θm(1 − θ)n−m

Let us choose the following Beta prior distribution:

p(θ) =
Γ(α)Γ(β)

Γ(α + β)
θα−1(1 − θ)β−1

where Γ denotes the Gamma-function. For the time

being, α and β are fixed hyper-parameters. The

posterior distribution is proportional to:

p(θ|x) ∝

with normalisation constant
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Since the posterior is also Beta, we say that the Beta prior

is conjugate with respect to the binomial likelihood. Con-

jugate priors lead to the same form of posterior.

Different hyper-parameters of the Beta Be(α, β) distribution

give rise to different prior specifications:

�
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The generalisation of the Beta distribution is the Dirichlet

distribution D(αi), with density

p(θ) ∝
k∏

i=1

θαi−1
i

where we have assumed k possible thetas. Note that the

Dirichlet distribution is conjugate with respect

to a Multinomial likelihood.
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� BAYESIAN LEARNING FOR LINEAR-GAUSSIAN MOD-

ELS

In the Bayesian linear prediction setting, we focus on com-

puting the posterior:

p(θ|X, Y ) ∝ p(Y |X, θ)p(θ)

=
(
2πσ2

)−n
2 e

− 1
2σ2 (Y −Xθ)T (Y −Xθ)

p(θ)

We often want to maximise the posterior — that is, we look

for the maximum a poteriori (MAP) estimate. In this case,

the choice of prior determines a type of constraint! For ex-

ample, consider a Gaussian prior θ ∼ N (0, δ2σ2Id). Then

p(θ|X,Y ) ∝ (
2πσ2

)−n
2 e

− 1
2σ2 (Y −Xθ)T (Y −Xθ) (

2πσ2δ2
)−d

2 e
− 1

2δ2σ2 θT θ

Our task is to rearrange terms in the exponents in order to

obtain a simple expression for the posterior distribution.
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�

p(θ|X,Y ) =
∣∣2πσ2M

∣∣−1
2 e

− 1
2σ2 (θ−µ)T M−1(θ−µ)

∝ (
2πσ2

)−n
2 e

− 1
2σ2 (Y −Xθ)T (Y −Xθ) (

2πσ2δ2
)−d

2 e
− 1

2δ2σ2 θT θ
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So the posterior for θ is Gaussian:

p(θ|X,Y ) =
∣∣2πσ2M

∣∣−1
2 e

− 1
2σ2 (θ−µ)T M−1(θ−µ)

with sufficient statistics:

E(θ|X, Y ) = (XXT + δ−2Id)
−1XTY

var(θ|X, Y ) = (XXT + δ−2Id)
−1σ2

The MAP point estimate is:

θ̂MAP = (XXT + δ−2Id)
−1XTY

It is the same as the ridge estimate (except for a trivial

negative sign in the exponent of δ), which results from the

L2 constraint. A flat (“vague”) prior with large variance

(large δ) leads to the ML estimate.

θ̂MAP = θ̂ridge
δ2→0−→ θ̂ML = θ̂SV D = θ̂LS
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2 Full Bayesian Model

In Bayesian inference, we’re interested in the full posterior:

p(θ, σ2, δ2|X,Y ) ∝ p(Y |θ, σ2, X)p(θ|σ2, δ2)p(σ2)p(δ2)

where

Y |θ, σ2, X ∼ N (Xθ, σ2In)

θ ∼ N (
0, (σ2δ2Id)

)
σ2 ∼ IG (a/2, b/2)

δ2 ∼ IG (α, β)

where IG (α, β) denotes the Inverse-Gamma distribu-

tion.

δ2 ∼ IG (α, β) =
βα

Γ(α)
e−β/δ2

(δ2)−α−1
I[0,∞)(δ

2)

This is the conjugate prior for the variance of a

Gaussian. The generalization of the Gamma distribution,

i.e. the conjugate prior of a covariance matrix is the inverse
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Wishart distribution Σ ∼ IWd(α, αΣ∗), admitting the

density

p(Σ|α, Σ∗) ∝ |Σ|−(α+d+1)/2 exp{−(1/2)tr(αΣ∗Σ−1)}

We can visualise our hierarchical model with the following

graphical model:

�
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The product of likelihood and priors is:

p(θ, σ2, δ2|X,Y ) ∝ (
2πσ2

)−n
2 e

− 1
2σ2 (Y −Xθ)T (Y −Xθ)

× (2πσ2δ2
)−d

2 e
− 1

2δ2σ2 θT θ

× (σ2)−a/2−1e
− b

2σ2 (δ2)−α−1e
− β

δ2

We know from our previous work on computing the posterior

for θ that:

p(θ, σ2, δ2|X, Y ) ∝ (2πσ2)−n/2e
− 1

2σ2Y T PY

× (2πσ2δ2)−d/2e
− 1

2σ2 (θ−µ)T M−1(θ−µ)

× (σ2)−a/2−1e
− b

2σ2 (δ2)−α−1e
− β

δ2

where

M−1 = XTX + δ−2Id

µ = MXTY

P = In − XMXT
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From this expression, it is now obvious that

p(θ|σ2, X, Y ) = N (µ, σ2M)

Next, we integrate p(θ, σ2, δ2|X, Y ) over θ in order to get

an expression for p(σ2, δ2|X,Y ). This will allow us to get

an expression for the marginal posterior p(σ2|X, Y ).

�

p(σ2|X, Y ) ∼ IG

(
a + n

2
,
b + Y ′PY

2

)
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Integrating over σ2 gives us an expression for p(δ2|X,Y )

�

Unfortunately this is a nonstandard distribution, thus mak-

ing it hard for us to come up with the normalizing constant.

So we’ll make use of the fact that we know θ and σ2 to derive
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a conditional distribution p(δ2|θ, σ2, X, Y ).

� We know that:

p(θ, σ2, δ2|X,Y ) ∝ (
2πσ2

)−n
2 e

− 1
2σ2 (Y −Xθ)T (Y −Xθ)

× (2πσ2δ2
)−d

2 e
− 1

2δ2σ2 θT θ

× (σ2)−a/2−1e
− b

2σ2 (δ2)−α−1e
− β

δ2
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In summary, we can

• Obtain p(θ|σ2, δ2, X, Y ) analytically.

• Obtain p(σ2|δ2, X, Y ) analytically.

• Derive an expression for p(δ2|θ, σ2, X, Y ).

Given δ2, we can obtain analytical expressions for θ and

σ2. But, let’s be a bit more ambitious. Imagine we could

run the following sampling algorithm (known as the Gibbs

Sampler)
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�

1. LOAD data (X, Y ).

2. Compute XTY and XTX .

3. Set, e.g., a = b = 0, α = 2 and β = 10.

4. Sample δ2(0) ∼ IG (α, β).

5. FOR i = 1 to N :

(a) Compute M , P and µ(i) using δ2(i−1).

(b) Sample σ2(i) ∼ IG
(

a+n
2 , b+Y ′PY

2

)
.

(c) Sample θ(i) ∼ N (µ(i), σ2(i)M).

(d) Sample δ2(i) ∼ IG
(

d
2 + α, β + θ(i)T θ(i)

2σ2(i)

)
.

We can use these samples in order to approximate the inte-

grals of interest with Monte Carlo averages.
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For example, the predictive distribution

p(yn+1|X1:n+1, Y )=

∫
p(yn+1|θ, σ2, xn+1)p(θ, σ2, δ2|X,Y )dθdσ2dδ2

can be approximated with:

p̂(yn+1|X1:n+1, Y ) =
1

N

N∑
i=1

p(yn+1|θ(i), σ2(i), xn+1)

That is,

�

p̂(yn+1|X1:n+1, Y ) =

In the next lecture, we will derive the theory that justifies

the use of this algorithm as well a many other Monte Carlo

algorithms.


