
CPSC-540 Machine Learning 2007

Homework # 3
Due Thursday March 29 in class if you would like feedback before exam. Otherwise Tuesday April

3.

NAME:

Signature:

STD. NUM:

General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are
to be done on your own.
Homework grades will be based not only on getting the “correct answer,” but
also on good writing style and clear presentation of your solution. It is your
responsibility to make sure that the graders can easily follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for
explaining why you got stuck on a promising line of attack. More importantly, you will get
valuable feedback that will help you learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you
used to help you solve the problem (e.g. books from the library). This won’t affect your
grade but is important as academic honesty.
When dealing with Matlab exercises, please attach a printout with all your code
and show your results clearly.

1. Importance sampling for Logistic Regression:

The file islogit.m, consists of input-output i.i.d. data sets x , x1:T , {x0, x1, . . . , xT }
and y , y1:T , {y0, y1, . . . , yT }, where xt ∈ R and yt ∈ {0, 1}. The idea is to come up
with a model that takes a new input xT+1 and produces as output p(yT+1 = 1|xT+1) and
p(yT+1 = 0|xT+1). This classification problem arises in several areas of technology, including
condition monitoring and binary decision systems. For example, when monitoring patients, we
might wish to decide whether they require an increase in drug intake based on new evidence.

For practical reasons, we parameterise our model. In particular, we introduce the following
Bernoulli likelihood function:

p(yt|xt, θ) =
[

1
1 + exp (−θxt)

]yt
[
1− 1

1 + exp (−θxt)

]1−yt

where θ are the model parameters. The logistic function p(yt = 1|xt) = 1
1+exp(−θxt)

is con-
viniently bounded between 0 and 1.

We also assume a Gaussian prior

p(θ) =
1√

2πσ2
exp

(
− 1

2σ2
(θ − µ)′(θ − µ)

)

The goal of the analysis is then to compute the posterior distribution p(θ|x1:T , y1:T). This
distribution will enable us to classify new data as follows

p(yT+1|x1:T+1) =
∫

Θ
p(yT+1|xT+1, θ)p(θ|x1:T , y1:T)dθ

Bayes’ rule gives us the following expression for the posterior

p(θ|x1:T , y1:T) ∝ 1√
2πσ2

exp
(
− 1

2σ2
(θ − µ)′(θ − µ)

)

×
T∏

t=1

[
1

1 + exp (−θ′x)

]yt
[
1− 1

1 + exp (−θ′x)

]1−yt

The problem is that in this case we can’t solve the normalising integral analytically. So
we have to use numerical methods — in this case importance sampling — to approximate
p(θ|x1:T , y1:T). Note that we cannot sample from p(θ|x1:T , y1:T) directly because we don’t
know the normalising constant. So instead we sample from a proposal distribution q(θ) (say
a Gaussian) and weight the samples using importance sampling. After obtaining N samples
of θ from the posterior, we can classify new data as follows

p(yT+1|x1:T+1) =
1
N

N∑

i=1

p(yT+1|xT+1, θ
(i))

Load the data in the file islogit.m. Assume the following prior and proposal

p(θ) = N (1, 1.5)

−2 −1 0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
x 10

−3

θ

Prior
Generating θ
Likelihood
Posterior
Proposal

Figure 1: Plots of the distributions used in problem 1
.

q(θ) = N (1, 3)

The prior, likelihood, posterior and proposal are shown in Figure 1. I used numerical algo-
rithms to compute them.

For this question, you need to implement an importance sampler to approximate p(θ|x, y).
So you need to sample from it and then you need to use the hist command to produce the
plot shown in Figure 2. The top histogram represents the approximation of the posterior,
while the bottom one is the predictive distributions (probability of outcome being zero or
one). Repeat the experiment for N = 1000 and N = 10000 samples.

To help you a bit, here’s the structure of the program. Fill in the missing code where the
sign ??? appears.

clear;

% SIMULATION PARAMETERS:

% =====================

N = 10000; % Number of samples..

N_bins = 20; % Number of bins in the histogram.

theta = zeros(N,1); % Samples.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

P
os

te
rio

r
p(

θ|
x,

y)

theta

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

P
re

di
ct

iv
e

di
st

rib
ut

io
n

Figure 2: Solution to problem 1
.

% PROPOSAL SPECIFICATION:

% ======================

s_q = 3; % Proposal variance.

m_q = 1; % Proposal mean.

% PRIOR SPECIFICATION:

% ===================

s_p = 1; % Prior variance.

m_p = 1.5; % Prior mean.

% LOAD THE DATA:

% =============

islogit;

[T,arb] = size(x);

% IMPORTANCE SAMPLING:

% ===================

for i=1:N,

z = ???

logLikelihood = ???

target = ???

proposal = ???

w(i) = target/(proposal+1e-99);

theta(i,:) = ???;

end;

w = w./sum(w); % Normalise the weights.

% RESAMPLING:

% ===========

% This is a black box routine.

resampled_index = deterministicR(1:N,w’);

theta(:,:) = theta(resampled_index,:);

% PLOTS THE TRUE POSTERIOR AND THE MONTE CARLO APPROXIMATION:

% ===

figure(1)

clf;

subplot(211)

[b,a] = hist(theta,N_bins);

bar(a,b/sum(b),’y’)

ylabel(’Posterior p(\theta|x,y)’)

xlabel(’theta’)

% TEST DATA:

% =========

logit_pred = zeros(N,1);

y_pred = zeros(N,1);

x = randn; % Generate a random test point.

for i=1:N,

logit_pred(i) = (1+exp(-x*theta(i))).^(-1);

y_pred(i) = rand < logit_pred(i); % i.e. y_pred is Bernoulli(logit_pred).

end;

subplot(212)

[b,a] = hist(y_pred,N_bins);

bar(a,b/sum(b),’y’)

ylabel(’Predictive distribution’)

2. Gibbs Sampling for Linear Regression:

Implement the Gibbs sampler for linear regression from the lecture notes. Apply it to the
problem of predicting house prices in Boston. The code should start with the following lines:

echo off; clear;

% LOAD THE DATA AND EDIT IT:

% =========================

data = load(’housing.data’); % Load the data.

x = data(:,[1:3 5:13]); % Input data.

[nn,dold] = size(x);

x = [ones(nn,1) x]; % Add 1 for bias term.

[nn,d] = size(x); % d is the dimension of theta

% nn is the total number of data

y = data(:,14); % Output data.

% PRIOR PARAMETERS

% ================

a = 0;

b = 0;

alpha = 2;

beta = 10;

% CREATE THE TRAIN AND TEST SETS:

% ==============================

n = 500; % Number of training examples.

xTrain = x(1:n,:); % Training input data.

yTrain = y(1:n,:); % Training ouput data.

xTest = x(n+1:nn,:); % Test input data.

yTest = y(n+1:nn,:); % Test output data.

[n2,tmp] = size(xTest);

% INITIALIZATION:

% ===============

XY = xTrain’*yTrain;

XX = xTrain’*xTrain;

X = xTrain;

Y = yTrain;

N = 500; % Number of samples.

theta = zeros(d,N);

mu = zeros(d,N);

sigma2 = zeros(N,1);

delta2 = zeros(N,1);

delta2(1) = inv(gengamma(alpha,beta));

for i=1:N,

???

Your code should be able to produce the following plots

0 100 200 300 400 500
16

18

20

22

24

26

28

30

σ2

N
0 100 200 300 400 500

0

2

4

6

8

10

12

δ2

N

15 20 25 30
0

20

40

60

80

p(
σ2 |X

,Y
)

0 5 10 15
0

20

40

60

80

p(
δ2 |X

,Y
)

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

40

50
Training set

501 501.5 502 502.5 503 503.5 504 504.5 505 505.5 506
10

15

20

25

30
Test set

True value
Prediction

Compare your training and test errors with the least squares solution.

3. PCA and Gaussian Processes for Motion Capture Data:

In this exercise the data consists of a matrix X ∈ R993×69 of 993 captured human poses of
69 points. Each point corresponds to a position of a body part, e.g. neck, left arm, right foot
and so on. The goal of the exercise is to project the 993 poses to a 2D space using PCA. Next,
we construct a nonlinear Gaussian Process regression function from the 2D PCA space to the
69D body part space. That is, by specifying a point in the 2D space, the nonlinear regression
model should predict a pose in the 69D space. This enables us to control a character with
many degrees of freedom using a 2-dimensional interface.

The website provides three files. The file loaddata.m simply loads the data. The file
defineLines.m describes how each body part is connected to the other body parts using
lines. Finally, the file mocaph.m is the most important one. You should edit this file and
enter the right commands (where question marks appear) in order to do PCA and nonlinear
regression. Note that the nonlinear regression machine is tested both on training and test
data and compared to the true data.

You should hand in all your code and a picture of the last frame of animation.

4. K-means and EM:

The file clusterData.dat on the homework website contains 200 rows of (x1, x2) pairs.

(i) Plot this data. The plots in the following parts should be plotted on top of this plot.

(ii) Implement the K-means algorithm and apply it to the data, using 3 clusters and iterating
until the algorithm converges. For initialisation, use the cluster centroids µ1 = (0.5, 2.3),
µ2 = (0.5, 0.5) and µ3 = (5.2,−0.1). Plot the evolution of the cluster centroids as the
algorithm runs (that is, plot µ

(t)
c for each c and iteration t).

(iii) Implement the EM algorithm for fitting a mixture of Gaussians,

p(x|θ) =
3∑

c=1

p(c)N (x|µc, Σc),

on the same dataset. For initialisation, use the same means as in (ii) and set p(c) =
(1/3, 1/3, 1/3) and Σ1 = Σ2 = Σ3 = I. Plot the evolution of the means and (optional)
superimpose the elipses for the variances around the respective means.

(iv) Comment on the relative rates at which the two algorithms converge.

5. Vector quantisation and image compression:

In this problem, we will apply the K-means algorithm to lossy image compression, by reducing
the number of colors used in an image.

The data website contains a 512x512 image of a mandrill represented in 24-bit colour. This
means that, for each 262144 pixels in the image, there are three 8-bit numbers (each ranging
from 0 to 255) that represent the green, red and blue intensity values for that pixel. The
straightforward representation of this image therefore takes about 262144x3 = 786432 bytes
(a byte being 8 bits). To compress the image, we will use K-means to reduce the image to
K=16 colours. More specifically, each pixel in the image is considered a point in the three-
dimensional (r,g,b)-space. To compress the image, we will cluster these points in colour-space
into 16 clusters, and replace each pixel with the closest cluster centroid.
(i) Load and plot the image mandrill-large.tiff using the following Matlab commands:

A = double(imread(’mandrill-large.tiff’));

imshow(uint8(round(A)));

The first line creates a three dimensional matrix, such that A(:,:,1),A(:,:,2) and A(:,:,3)
are 512x512 arrays that respectively contain the red, green and blue values for each pixel.
Since this image is large, K-means would take too long. Instead, you should load and cluster
the image mandrill-small.tiff. In particular, treat each pixel’s (r,g,b) values as an element
of R3 and run K-means with 16 clusters on this image. Iterate to (preferably) convergence,
but in any case for less than 30 iterations. For initialisation, set each cluster centroid to the
(r,g,b) values of a randomly chosen pixel in the image.

(ii) Take the matrix A from mandril-large.tiff, and replace each pixel’s (r,g,b) values with
the value of the closest cluster centroid. Display the new image, and compare it visually to
the original image. Hand in all your code and a printout of your compressed image next to
the original image (printing on a black-and-white printer is fine).

6. Clustering text documents:

Load the file textData.dat, available on the homework website. This file contains a document-
word matrix consisting of 8 documents. Cluster the documents using a mixture of Multino-
mial distributions with K = 10 clusters. Do this by finding both the maximum likelihood and
maximum a posteriori (MAP) estimates of the mixture parameters. For the MAP estimator,
choose the Dirichlet prior parameters to be α = 1 and β = 4.

(i) For each estimator plot a histogram of the cluster probabilities p(c).

(ii) How many clusters of documents are there (roughly)? You might have to run EM a few
times with different initialisations in this data exploration stage.

(iii) Which documents belong together?

7. Kalman Filtering:

We consider the following dynamic state space model:

xt = Axt−1 + Bwt + Fut

yt = Cxt + Dvt + Gut,

where yt ∈ Rny denotes the observations, xt ∈ Rnx denotes the unknown Gaussian states,
ut ∈ U is a known control signal, the parameters (A,B, C,D, F, G) are known matrices and
the initial mean and covariance of xt are µ0, Σ0. The noise processes are i.i.d Gaussian:
wt ∼ N (0, I) and vt ∼ N (0, I). Our model implies the continuous densities

p(xt|xt−1) = N (Axt−1 + Fut, BBT)
p(yt|xt) = N (Cxt + Gut, DDT).

Load the data in the file kalmanData.mat, available on the course website. This file contains
the parameters, observations and control signal. Using this information, implement a Kalman
filter to estimate the hidden states x1:T . Hand in a plot of the estimated state sequence and
a plot showing the data y2:T and the one-step-ahead predictions ŷ2:T .

8. Particle Filtering:

This question builds on the importance sampling question of the previous homework. How-
ever, now we have a dynamical model. That is, the parameters are changing over time. It is
therefore necessary to update the posterior distribution as data become available. Examples
include tracking an aircraft using radar measurements, estimating a digital communications
signal using noisy measurements or estimating the volatility of financial instruments using
stock market data.

The dynamic model consists of three equations: the initial probability, the transition model
and the observation model. The unobserved signal (hidden states or unknown parameters)
{xt; t ∈ N}, xt ∈ X , is modelled as a Markov process of initial distribution p (x0) and transition
equation p (xt|xt−1). The observations {yt; t ∈ N}, yt ∈ Y, are assumed to be conditionally
independent given the process {xt; t ∈ N} and of marginal distribution p (yt|xt). To sum up,
the model is described by

p (x0)
p (xt|xt−1) for t ≥ 1

p (yt|xt) for t ≥ 1

(i) Draw the probabilistic graphical model for this problem.

So we know p(x0), p(xt|xt−1) and p(yt|xt). Our aim is to estimate recursively in time the pos-
terior distributionp (x0:t| y1:t) and its associated features including the marginal distribution
p (xt| y1:t), known as the filtering distribution.

At any time t, the posterior distribution is given by Bayes’ theorem

p (x0:t| y1:t) =
p (y1:t|x0:t) p (x0:t)∫

p (y1:t|x0:t) p (x0:t) dx0:t

(ii) Show that the following recursive update is true:

p (x0:t+1| y1:t+1) = p (x0:t| y1:t)
p (yt+1|xt+1) p (xt+1|xt)

p (yt+1| y1:t)

State your conditional independency assumptions clearly.

The marginal distribution p (xt| y1:t) also satisfies the following recursion

Prediction: p (xt| y1:t−1) =
∫

p (xt|xt−1) p (xt−1| y1:t−1) dxt−1

Updating: p (xt| y1:t) =
p (yt|xt) p (xt| y1:t−1)∫

p (yt|xt) p (xt| y1:t−1) dxt

These expressions and recursions are deceptively simple as one cannot typically compute the
integrals. However, if the distributions are Gaussian or discrete, we can solve the integrals. In
the Gaussian case, the answer is known as the Kalman filter. In the discrete case, the answer
gives rise to the HMM filter. In general, we need to do sampling to solve this problem.

Let’s do importance sampling. That is, we sample from a proposal distribution that we choose
and then weight the samples appropriately. Let the proposal distribution be

q (x0:t| y1:t) = p (x0:t−1| y1:t−1) q (xt|x0:t−1, y1:t)

That is, the proposal only affects the state at time t. In other words, we don’t modify samples
in the past.

(iii) Show that the importance weights are given by

wt ∝ p(yt|xt)p(xt|xt−1)
q(xt|x1:t−1, y1:t)

Hint:
wt =

p(x0:t|y1:t)
q(x0:t|y1:t)

(iv) What’s the expression for wt when we go for the choice q(xt|x1:t−1, y1:t) = p(xt|xt−1)?

The idea is to draw N samples (known as particles) at each time step t. We then weight these
samples and choose the fittest samples by resampling. The basic algorithm is as follows:

Simple Particle Filter

(a) Initialization, t = 0.

• For i = 1, ..., N , sample x(i)
0 ∼ p (x0) and set t = 1.

2. Importance sampling step

• For i = 1, ..., N , sample x̃(i)
t ∼ p

(
xt|x(i)

t−1

)
.

• For i = 1, ..., N , evaluate the importance weights w̃
(i)
t ∝ p

(
yt| x̃(i)

t

)

• Normalise the importance weights.

3. Selection step

• Resample with

replacement N particles
(
x(i)
t ; i = 1, . . . ,N

)
from the set

(
x̃(i)

t ; i = 1, . . . , N
)

according

to the importance weights.

• Set t ← t + 1 and go to step 2.

The set of N particles at each time step, provides a description of the filtering distribution
p(xy|y1:t).

For demonstration purposes, we apply the bootstrap algorithm to the following nonlinear,
non-Gaussian model

xt =
1
2
xt−1 + 25

xt−1

1 + x2
t−1

+ 8 cos (1.2t) + vt

yt =
x2

t

20
+ wt

where x1 ∼ N (
0, σ2

1

)
, vt and wt are mutually independent white Gaussian noises, vt ∼

N (
0, σ2

v

)
and wt ∼ N (

0, σ2
w

)
with σ2

1 = 10, σ2
v = 10 and σ2

w = 1.

(v) The implementation is is the file pfhomework.m. Run this file with the data trackingData.mat
and save the two plots. Finally, replace the model by the following model

xt =
1
2
xt−1 + 25

xt−1

1 + x2
t−1

+ 5 sin (1.2t) + vt

yt =
x2

t

11
+ wt

where σ2
1 = 2, σ2

v = 2 and σ2
w = 0.05. Run the algorithm using the data file trackingData2.mat.

Generate the two plots. In total, you should hand in four plots and explain the results.

