
CPSC-540: Machine Learning 95

Lecture 9 - Monte Carlo

OBJECTIVE: Monte Carlo techniques are used to carry

out integration, simulation and optimisation in large dimen-

sional spaces. They allow us to carry out inference and learn-

ing with complex intractable models. In this lecture, we

will learn about Monte Carlo, importance sampling, Markov

chain Monte Carlo (MCMC) and particle filters.

3 MONTE CARLO

Monte Carlo methods enable us to solve the following

problems:

1. Normalisation : To obtain the posterior p(x|y) given

the prior p(x) and likelihood p(y|x), the normalising

factor in Bayes’ theorem needs to be computed

p(x|y) =
p(y|x)p(x)∫

X p(y|x′)p(x′)dx′
.

2. Marginalisation : Given the joint posterior of (x, z) ∈

CPSC-540: Machine Learning 96

X × Z , we may often be interested in the marginal

posterior

p(x|y) =

∫

Z
p(x, z|y)dz.

3. Expectation : The objective of the analysis is often to

obtain summary statistics of the form

Ep(x|y)(f(x)) =

∫

X
f(x)p(x|y)dx

for some function of interest f : X → R
nf integrable

with respect to p (x| y). Examples of appropriate func-

tions include the conditional mean, in which case f (x) =

x, or the conditional covariance of x where f (x) =

xx′ − Ep(x|y)(x)E′p(x|y)(x).

4. Statistical mechanics: Here, one needs to compute

the partition function Z of a system with states s and

Hamiltonian E(s)

Z =
∑

s

exp

[
−E(s)

kT

]
,

CPSC-540: Machine Learning 97

where k is the Boltzmann’s constant and T denotes the

temperature of the system. Summing over the large

number of possible configurations is prohibitively expen-

sive. Note that the problems of computing the partition

function and the normalising constant in statistical in-

ference are analogous.

5. Optimisation: The goal of optimisation is to extract

the solution that minimises some objective function from

a large set of feasible solutions. In fact, this set can be

continuous and unbounded. In general, it is too compu-

tationally expensive to compare all the solutions to find

out which one is optimal.

6. Simulation: One often needs to simulate physical sys-

tems in physics and computer graphics.

CPSC-540: Machine Learning 98

The Monte Carlo Principle

The idea of Monte Carlo simulation is to draw an i.i.d. set

of samples {x(i)}Ni=1 from a target density p(x) defined on

a high-dimensional space X . These N samples can be used

to approximate the target distribution with the following

empirical point-mass function (think of it as a histogram):

pN (dx) =
1

N

N∑

i=1

δx(i) (dx) ,

where δx(i) (dx) denotes the delta-Dirac mass located at x(i).

Samples
Approximation
Target distribution

CPSC-540: Machine Learning 99

Consequently, one can approximate the integrals (or very

large sums) I (f) with tractable sums IN (f) as follows

?

I (f) =

∫

X
f(x)p(x)dx.

CPSC-540: Machine Learning 100

• The advantage of Monte Carlo integration over deter-

ministic integration arises from the fact that the former

positions the integration grid (samples) in regions of high

probability.

• The N samples can also be used to obtain a maximum

of the objective function p(x) as follows

x̂ = arg max
x(i);i=1,...,N

p
(
x(i)
)

However, we will show later that it is possible to con-

struct simulated annealing algorithms that allow us to

sample approximately from a distribution whose support

is the set of global maxima.

• When p(x) has standard form, e.g. Gaussian, it is

straightforward to sample from it using easily available

routines. However, when this is not the case, we need

to introduce more sophisticated techniques based on im-

portance sampling and MCMC.

CPSC-540: Machine Learning 101

Importance Sampling

Importance sampling is a “classical” solution that goes back

to the 1940’s. Let us introduce an arbitrary importance

proposal distribution q(x) such that its support includes the

support of p(x) and such that we can sample from it. Then

we can rewrite I(f) as follows

I (f) =

∫
f (x) w (x) q (x) dx

where w (x) ,
p(x)
q(x)

is known as the importance weight.

? Proof:

CPSC-540: Machine Learning 102

Consequently, if one can simulate N i.i.d. samples {x(i)}Ni=1

according to q (x) and evaluate w(x(i)), a possible Monte

Carlo estimate of I (f) is

?

ÎN (f) =

This estimator is unbiased and, under weak assumptions,

the strong law of large numbers applies, that is ÎN (f)
a.s.−→

N→∞
I (f). It is clear that this integration method can also be

interpreted as a sampling method where the posterior density

p (x) is approximated by:

p̂N (dx) =
1

N

N∑

i=1

w(x(i))δx(i) (dx)

Some proposal distributions q(x) will obviously be preferable

to others.

CPSC-540: Machine Learning 103

When the normalising constant of p(x) is unknown, it is still

possible to apply the importance sampling method:

?

The Monte Carlo estimate of I (f) becomes

ĨN (f) =
1
N

∑N
i=1 f

(
x(i)
)
w(x(i))

1
N

∑N
j=1 w

(
x(i)
) =

N∑

i=1

f
(
x(i)
)

w̃(x(i))

where w̃(x(i)) is a normalised importance weight. For N

finite, ĨN (f) is biased (ratio of two estimates) but asymp-

totically, under weak assumptions, the strong law of large

numbers applies, that is ĨN (f)
a.s.−→

N→∞
I (f).

CPSC-540: Machine Learning 104

Sampling Importance Resampling (SIR)

If one is interested in obtaining M i.i.d. samples from

p̂N (x), then an asymptotically (N/M → ∞) valid method

consists of resampling M times according to the discrete dis-

tribution p̂N (x).

?

This procedure results in M samples x̃(i) with the possibility

that x̃(i) = x̃(j) for i 6= j. After resampling, the approxima-

tion of the target density is

p̃M (dx) =
1

M

M∑

i=1

δx̃(i) (dx)

CPSC-540: Machine Learning 105

The SIR algorithm to sample from the posterior p(x|y) is as

follows:

Set i = 1

Repeat until i = N

1. Sample x(i)∼q (x)

2. Evaluate p(x(i)|y) up to a normalising constant.

3. Evaluate q(x(i)) up to a normalising constant.

4. Compute w(x(i)).

Normalise w(x(i)) to obtain w̃(x(i)).

Resample {x(i), w̃(x(i))}Ni=1 −→ {x̃(i), 1/N}Ni=1

CPSC-540: Machine Learning 106

Example: Logistic Regression and Binary Classi-

fication

Given the input-output i.i.d. data sets x , x1:T , {x0, x1, . . . , xT}
and y , y1:T , {y0, y1, . . . , yT}, where xt ∈ R and yt ∈
{0, 1}. The idea is to come up with a model that takes a

new input xT+1 and produces as output p(yT+1 = 1|xT+1)

and p(yT+1 = 0|xT+1). This classification problem arises in

several areas of technology, including condition monitoring

and binary decision systems. For example, when monitoring

patients, we might wish to decide whether they require an

increase in drug intake based on new evidence.

?

CPSC-540: Machine Learning 107

For practical reasons, we parameterise our model. In particu-

lar, we introduce the following Bernoulli likelihood function:

p(yt|xt, θ) =

[
1

1 + exp (−θxt)

]yt
[
1− 1

1 + exp (−θxt)

]1−yt

where θ are the model parameters. The logistic function

p(yt = 1|xt) = 1
1+exp(−θxt)

is conviniently bounded between

0 and 1.

?

We also assume a Gaussian prior

p(θ) =
1√

2πσ2
exp

(
− 1

2σ2
(θ − µ)′(θ − µ)

)

CPSC-540: Machine Learning 108

The goal of the analysis is then to compute the posterior

distribution p(θ|x1:T , y1:T). This distribution will enable us

to classify new data as follows

p(yT+1|x1:T+1) =

∫

Θ

p(yT+1|xT+1, θ)p(θ|x1:T , y1:T)dθ

Bayes’ rule gives us the following expression for the posterior

p(θ|x1:T , y1:T) ∝ 1√
2πσ2

exp

(
− 1

2σ2
(θ − µ)′(θ − µ)

)

×
T∏

t=1

[
1

1 + exp (−θ′x)

]yt
[
1− 1

1 + exp (−θ′x)

]1−yt

The problem is that in this case we can’t solve the nor-

malising integral analytically. So we have to use numeri-

cal methods — in this case importance sampling — to ap-

proximate p(θ|x1:T , y1:T). Note that we cannot sample from

p(θ|x1:T , y1:T) directly because we don’t know the normalis-

ing constant. So instead we sample from a proposal distri-

bution q(θ) (say a Gaussian) and weight the samples using

importance sampling. After obtaining N samples of θ from

CPSC-540: Machine Learning 109

the posterior, we can classify new data as follows

?

In your homework, you’ll be given some data and the follow-

ing prior and proposal:

p(θ) = N (1, 1.5)

q(θ) = N (1, 3)

The prior, likelihood, posterior and proposal are shown in

the following plot.

CPSC-540: Machine Learning 110

−2 −1 0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
x 10

−3

θ

Prior
Generating θ
Likelihood
Posterior
Proposal

The empirical posterior (histogram approximation) obtained

with importance sampling is:

0 1 2 3 4 5 6
0

0.05

0.1

0.15
Importance Sampling Approximation

CPSC-540: Machine Learning 111

3 MCMC Algorithms

MCMC is a strategy for generating samples x(i) while explor-

ing the state space X using a Markov chain mechanism. This

mechanism is constructed so that the chain spends more time

in the most important regions. In particular, it is constructed

so that the samples x(i) mimic samples drawn from the target

distribution p(x). (We reiterate that we use MCMC when

we cannot draw samples from p(x) directly, but can evaluate

p(x) up to a normalising constant.)

It is intuitive to introduce Markov chains on finite state

spaces, where x(i) can only take s discrete values x(i) ∈
X = {x1, x2, . . . , xs}. The stochastic process x(i) is called a

Markov chain if

p(x(i)|x(i−1), . . . , x(1)) = T (x(i)|x(i−1)),

Google’s PageRank is a good example of a Markov

chain algorithm.

CPSC-540: Machine Learning 112

For any starting point, the chain will converge to the in-

variant distribution p(x) (principal eigenvector), as long as

T is a stochastic transition matrix that obeys the following

properties:

1. Irreducibility : For any state of the Markov chain, there

is a positive probability of visiting all other states. That

is, the matrix T cannot be reduced to separate smaller

matrices, which is also the same as stating that the tran-

sition graph is connected.

2. Aperiodicity : The chain should not get trapped in cy-

cles.

CPSC-540: Machine Learning 113

A sufficient, but not necessary, condition to ensure that

a particular p(x) is the desired invariant distribution is the

following reversibility (detailed balance) condition

p(x(i))T (x(i−1)|x(i)) = p(x(i−1))T (x(i)|x(i−1)).

Summing both sides over x(i−1), gives us

?

MCMC samplers are irreducible and aperiodic Markov chains

that have the target distribution as the invariant distribu-

tion. One way to design these samplers is to ensure that

detailed balance is satisfied. However, it is also important to

design samplers that converge quickly.

CPSC-540: Machine Learning 114

In continuous state spaces, the transition matrix T becomes

an integral kernel K and p(x) becomes the corresponding

eigenfunction

∫
p(x(i))K(x(i+1)|x(i))dx(i) = p(x(i+1)).

The kernel K is the conditional density of x(i+1) given the

value x(i). It is a mathematical representation of a Markov

chain algorithm. In the following sections, we will see how

to construct algorithmic versions of these kernels using a

general recipe known as Metropolis-Hastings.

?

CPSC-540: Machine Learning 115

The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is the most pop-

ular class of MCMC methods. Most practical MCMC algo-

rithms can be interpreted as special cases or extensions of

this algorithm.

An MH step of invariant distribution p (x) and proposal dis-

tribution q (x?|x) involves sampling a candidate value x?

given the current value x according to q (x?| x). The Markov

chain then moves towards x? with acceptance probability

A(x, x?) = min{1, [p(x)q(x?|x)]−1 p(x?)q(x|x?)}

Otherwise, it remains at x.

CPSC-540: Machine Learning 116

The pseudo-code is

1. Initialise x(0).

2. For i = 0 to N − 1

• Sample u ∼ U[0,1].

• Sample x? ∼ q(x?|x(i)).

• If u < A(x(i), x?) = min

{
1, p(x?)q(x(i)|x?)

p(x(i))q(x?|x(i))

}

x(i+1) = x?

else

x(i+1) = x(i)

The following figure shows the results of running the MH

algorithm with a Gaussian proposal distribution

q(x?|x(i)) = N (x(i), 100)

and a bimodal target distribution

p(x) ∝ 0.3 exp
(
−0.2x2

)
+ 0.7 exp

(
−0.2(x− 10)2

)

for 5000 iterations. As expected, the histogram of the sam-

CPSC-540: Machine Learning 117

ples approximates the target distribution.

−10 0 10 20
0

0.05

0.1

0.15

i=100

−10 0 10 20
0

0.05

0.1

0.15

i=500

−10 0 10 20
0

0.05

0.1

0.15

i=1000

−10 0 10 20
0

0.05

0.1

0.15

i=5000

In the following class, we will analyse the MH algorithms and

its variants, including the independence sampler, Metropolis

Random Walk, and Gibbs sampler. We will also introduce

particle filtering.

CPSC-540: Machine Learning 118

The transition kernel for the MH algorithm is

KMH(x
(i+1)|x(i)) = q(x(i+1)|x(i))A(x(i), x(i+1))+δx(i)(x

(i+1))r(x(i)),

where r(x(i)) is the term associated with rejection

r(x(i)) = 1−
∫

X−x(i)
q(x?|x(i))A(x(i), x?)dx?.

? Proof:

CPSC-540: Machine Learning 119

It is fairly easy to prove that the samples generated by

MH algorithm will mimic samples drawn from the target

distribution asymptotically. By construction, KMH satisfies

the detailed balance condition (prove this by substituting

the expression for the MH kernel into the detailed balance

equation)

p(x(i))KMH(x
(i+1)|x(i)) = p(x(i+1))KMH(x

(i)|x(i+1))

and, consequently, the MH algorithm admits p(x) as invari-

ant distribution. To show that the MH algorithm converges,

we need to ensure that there are no cycles (aperiodicity)

and that every state that has positive probability can be

reached in a finite number of steps (irreducibility). Since

the algorithm always allows for rejection, it follows that it is

aperiodic. To ensure irreducibility, we simply need to make

sure that the support of q(·) includes the support of p(·).
Under these conditions, we obtain asymptotic convergence.

CPSC-540: Machine Learning 120

The independent sampler and the Metropolis algorithm

are two simple instances of the MH algorithm. In the inde-

pendent sampler the proposal is independent of the current

state, q(x?|x(i)) = q(x?). Hence, the acceptance probability

is

A(x(i), x?) = min

{
1,

p(x?)q(x(i))

p(x(i))q(x?)

}
= min

{
1,

w(x?)

w(x(i))

}
.

This algorithm is close to importance sampling, but now the

samples are correlated since they result from comparing one

sample to the other.

The Metropolis algorithm assumes a symmetric random walk

proposal q(x?|x(i)) = q(x(i)|x?) and, hence, the acceptance

ratio simplifies to

A(x(i), x?) = min

{
1,

p(x?)

p(x(i))

}
.

CPSC-540: Machine Learning 121

Some properties of the MH algorithm are worth highlighting.

• Firstly, the normalising constant of the target distribu-

tion is not required. We only need to know the target

distribution up to a constant of proportionality.

• Secondly, it is easy to simulate several independent chains

in parallel.

• Lastly, the success or failure of the algorithm often hinges

on the choice of proposal distribution.

Different choices of the proposal standard deviation σ? lead

to very different results. If the proposal is too narrow, only

one mode of p(x) might be visited. On the other hand, if

it is too wide, the rejection rate can be very high, resulting

in high correlations. If all the modes are visited while the

acceptance probability is high, the chain is said to “mix”

well. This is illustrated in the following figure

CPSC-540: Machine Learning 122

Target distribution

MCMC approximation

Markov chain

σ =1 σ =100

σ =10

* *

*

(i) x

CPSC-540: Machine Learning 123

Simulated annealing for global optimization

Let us assume that instead of wanting to approximate p(x),

we want to find its global maximum. For example, if p(x)

is the likelihood or posterior distribution, we often want the

ML and maximum a posteriori (MAP) estimates.

In simulated annealing, one runs a non-homogeneous Markov

chain whose invariant distribution at iteration i is no longer

equal to p(x), but to

pi(x) ∝ p1/Ti(x),

where Ti is a decreasing cooling schedule with limi→∞ Ti = 0.

The reason for doing this is that, under weak regularity as-

sumptions on p(x), p∞(x) is a probability density that con-

centrates itself on the set of global maxima of p(x). The

simulated annealing involves, therefore, just a minor mod-

ification of standard MCMC algorithms as shown by the

following pseudo-code.

CPSC-540: Machine Learning 124

1. Initialise x(0) and set T0 = 1.

2. For i = 0 to N − 1

• Sample u ∼ U[0,1].

• Sample x? ∼ q(x?|x(i)).

• If u < A(x(i), x?) = min

{
1, p

1
Ti (x?)q(x(i)|x?)

p
1

Ti (x(i))q(x?|x(i))

}

x(i+1) = x?

else

x(i+1) = x(i)

• Set Ti+1 according to a chosen cooling schedule.

−10 0 10 20
0

0.1

0.2

i=100

−10 0 10 20
0

0.1

0.2

i=500

−10 0 10 20
0

0.1

0.2

i=1000

−10 0 10 20
0

0.1

0.2

i=5000

CPSC-540: Machine Learning 125

The Gibbs sampler

Suppose we have an n-dimensional vector x and the expres-

sions for the full conditionals p(xj|x1, . . . , xj−1, xj+1, . . . , xn).

In this case, it is often advantageous to use the following pro-

posal distribution for j = 1, . . . , n

q(x?|x(i)) =





p(x?
j |x(i)
−j) If x?

−j = x
(i)
−j

0 Otherwise.

The corresponding acceptance probability is:

? Proof:

CPSC-540: Machine Learning 126

That is, the acceptance probability for each proposal is one

and, hence, the deterministic scan Gibbs sampler algorithm

is often presented as shown below:

1. Initialise x0,1:n.

2. For i = 0 to N − 1

• Sample x
(i+1)
1 ∼ p(x1|x(i)

2 , x
(i)
3 , . . . , x

(i)
n).

• Sample x
(i+1)
2 ∼ p(x2|x(i+1)

1 , x
(i)
3 , . . . , x

(i)
n).

...

• Sample x
(i+1)
j ∼ p(xj|x(i+1)

1 , . . . , x
(i+1)
j−1 , x

(i)
j+1, . . . , x

(i)
n).

...

• Sample x
(i+1)
n ∼ p(xn|x(i+1)

1 , x
(i+1)
2 , . . . x

(i+1)
n−1).

Since the Gibbs sampler can be viewed as a special case of

the MH algorithm, it is possible to introduce MH steps into

the Gibbs sampler. It is also possible to group variables in

blocks an update them simultaneously.

CPSC-540: Machine Learning 127

Lecture 10 - Particle Filtering

OBJECTIVE: In this lecture, we introduce dynamic mod-

els, discuss some applications, and derive particle filtering.

3 DYNAMIC MODELS

A dynamic model consists of three equations: the ini-

tial probability, the transition model and the observation

model. The unobserved signal (hidden states or unknown

parameters) {xt; t ∈ N}, xt ∈ X , is modelled as a Markov

process of initial distribution p (x0) and transition equation

p (xt| xt−1). The observations {yt; t ∈ N}, yt ∈ Y , are as-

sumed to be conditionally independent given the process

{xt; t ∈ N} and of marginal distribution p (yt|xt).

p (x0)

p (xt| xt−1) for t ≥ 1

p (yt|xt) for t ≥ 1

CPSC-540: Machine Learning 128

The corresponding graphical models is as follows:

?

Examples include:

• Bioinformatics:

CPSC-540: Machine Learning 129

• Speech processing: Here yt are acoustic vectors and

xt correspond to the phonemes/words/sentences we’re

trying to recognise.

• Target tracking: yt are observations (typically noisy

and subject to clutter) and xt corresponds to our es-

timate of the position, velocity and acceleration of the

entity being tracked.

CPSC-540: Machine Learning 130

• Self-Diagnosis in Robots: yt are the robot’s obser-

vations and xt its internal states. If the robot knows its

internal state it can carry out diagnosis and self repair.

• Optimal Control

• Localisation and Map Learning in Robots: yt

are observations and xt corresponds to the estimate of

the robot’s location and the map of the environment.

CPSC-540: Machine Learning 131

• HCI

driving
Anomalous

Fatigue Intruder

Future
maneuvres

load
Information

Driver’s
gestures

GPS

Car sensors

Traffic

driving
Anomalous

Fatigue Intruder

Future
maneuvres

load
Information

Driver’s
gestures

GPS

Car sensors

Traffic

time t time t+1

• Graphics: yt are observations of a character’s move-

ment (joint angles) and xt is a compressed version of

the motion. Components of xt can be used to switch

between different types of motions, e.g. running, walk-

ing, dancing.

CPSC-540: Machine Learning 132

• Dynamic Data Compression

• Econometrics: yt could, for example, correspond to

forex data and xt to the volatility (“variance”) of the

market.

• Digital Communications

• Ecology Models

CPSC-540: Machine Learning 133

Bayesian Solution

The inference tasks in dynamic settings can be classified as

follows:

• Filtering: Compute p(xt|y1:t).

• Prediction: Compute p(xt+τ |y1:t).

• Smoothing: Compute p(xt−τ |y1:t).

where τ is positive. We focus on the filtering problem. Our

task is, therefore, to obtain a recurse estimator of p(xt|y1:t).

This is done in two steps:

Prediction : p (xt| y1:t−1) =

∫
p (xt|xt−1) p (xt−1| y1:t−1) dxt−1

Updating: p (xt| y1:t) =
p (yt| xt) p (xt| y1:t−1)∫

p (yt| xt) p (xt| y1:t−1) dxt

CPSC-540: Machine Learning 134

These expressions and recursions are deceptively simple as

one cannot typically compute the integrals. However, if the

distributions are Gaussian or discrete, we can solve the in-

tegrals. In the Gaussian case, the answer is known as the

Kalman filter. In the discrete case, the answer gives rise

to the HMM filter. In general, we need to do sampling

(Particle filtering) to solve this problem.

Particle Filtering

We begin with a review of the sequential Monte Carlo method

for approximating probability distributions and carrying out

integration in high-dimensional spaces. Assume we have

a distribution π(x1:n) over a sequence of random vectors,

x1:n , {x1,x2, . . . ,xn}, which is only known up to a nor-

malization constant:

π(x1:n) = Z−1
n f(x1:n)

CPSC-540: Machine Learning 135

where Zn ,
∫

f(x1:n)dx1:n is the partition function. We

are often interested in computing this partition function and

other expectations, such as

I(g(x1:n)) =

∫
g(x1:n)π(x1:n)dx1:n

If we had a set of samples
{
x

(i)
1:n

}N

i=1
from π, we could ap-

proximate this integral with the following Monte Carlo esti-

mator

π̂(dx1:n) =
1

N

N∑

i=1

δ
x

(i)
1:n

(dx1:n)

and consequently approximate the expectations of interest

with

Î(g(x1:n)) =
1

N

N∑

i=1

g(x
(i)
1:n)

It is typically hard to sample from π directly. Instead, we

can sample from a proposal distribution q and weight the

samples according to

wn =
f(x1:n)

q(xn|x1:n−1)f(x1:n−1)
wn−1

CPSC-540: Machine Learning 136

? Proof:

The set of weighted samples from q allows us to construct

the following estimate of the partition function

Ẑn =
1

N

N∑

i=1

w(i)
n

? Proof:

CPSC-540: Machine Learning 137

Given a set of N particles (samples) x
(i)
1:n−1, we obtain a set

of particles x
(i)
n by sampling from q(xn|x(i)

1:n−1) and applying

the recursive importance weights. To overcome slow drift in

the particle population, a resampling (selection) step chooses

the fittest particles.

Sequential importance sampling step

• For i = 1, ..., N , sample from the proposal

x̃
(i)
n ∼ q(xn|x(i)

1:n−1)

and set x̃
(i)
1:n ,

(
x̃

(i)
n ,x

(i)
1:n−1

)
.

• For i = 1, ..., N , evaluate the importance weights

w(i)
n =

f(x̃
(i)
1:n)

q(x̃
(i)
n |x̃(i)

1:n−1)f(x̃
(i)
1:n−1)

w
(i)
n−1

• Normalise the importance weights

w̃(i)
n =

w
(i)
n

∑
j w

(j)
n

Selection step

• Resample the discrete weighted measure
{
x̃

(i)
0:n, w̃

(i)
n

}N

i=1
to obtain an unweighted mea-

sure
{
x

(i)
0:n, 1

N

}N

i=1
of N new particles.

CPSC-540: Machine Learning 138

In Bayesian estimation, the target distribution is the poste-

rior distribution

π(x1:n) = p(x1:n|y1:n) = Z−1
n f(x1:n)

where Zn = p(y1:n) and

f(x1:n) = p(x1:n,y1:n) =
n∏

k=1

p(yn|xn)p(xn|xn−1)

Hence

wn =
p(yn|xn)p(xn|xn−1)

q(xn|x1:n−1,y1:n)
wn−1

? Proof:

CPSC-540: Machine Learning 139

In particular, if we choose the proposal to be the transition

prior p(xn|xn−1), then the importance weights are simply the

likelihood funtions p(yn|xn).

?

