
CPSC-540: Machine Learning 75

Lecture 8 - Maximum Likelihood

and Bayesian Learning

OBJECTIVE: In this chapter, we revise maximum like-

lihood (ML) for a simple binary model. We then introduce

Bayesian learning for this simple model and for the linear-

Gaussian regression setting of the previous chapters. The key

difference between the two approaches is that the frequentist

view assumes there is one true model responsible for the ob-

servations, while the Bayesian view assumes that the model

is a random variable with a certain prior distribution. Com-

putationally, the ML problem is one of optimization, while

Bayesian learning is one of integration.

3 MAXIMUM LIKELIHOOD

Frequentist Learning assumes that there is a true model

(say a parametric model with parameters θ0). The estimate

is denoted θ̂. It can be found by maximising the likelihood:

CPSC-540: Machine Learning 76

?

θ̂ = arg max
θ

p(x1:n|θ)

For identical and independent distributed

(i.i.d.) data:

p(x1:n|θ) =

L(θ) = log p(x1:n|θ) =

Let’s illustrate this with a coin-tossing example.
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? Let x1:n, with xi ∈ {0, 1}, be i.i.d. Bernoulli:

p(x1:n|θ) =

n∏

i=1

p(xi|θ)

With m ,
∑

xi, we have

L(θ) =

Differentiating, we get
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3 BAYESIAN LEARNING

Given our prior knowledge p(θ) and the data model p(·|θ),

the Bayesian approach allows us to update our prior using

the new data x1:n as follows:

p(θ|x1:n) =
p(x1:n|θ)p(θ)

p(x1:n)

where p(θ|x1:n) is the posterior distribution, p(x1:n|θ)

is the likelihood and p(x1:n) is the marginal likelihood

(evidence). Note

p(x1:n) =

∫
p(x1:n|θ)p(θ)dθ

?
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Bayesian Prediction

We predict by marginalising over the posterior of the param-

eters

p(xn+1|x1:n) =

∫
p(xn+1, θ|x1:n)dθ

=

∫
p(xn+1|θ)p(θ|x1:n)dθ

Bayesian Model Selection

For a particular model structure Mi, we have

p(θ|x1:n, Mi) =
p(x1:n|θ, Mi)p(θ|Mi)

p(x1:n|Mi)

Models are selected according to their posterior:

P (Mi|x1:n) ∝ P (x1:n|Mi)p(Mi) = P (Mi)

∫
p(x1:n|θ, Mi)p(θ|Mi)dθ

The ratio P (x1:n|Mi)/P (x1:n|Mj) is known as the Bayes

Factor.
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? Let x1:n, with xi ∈ {0, 1}, be i.i.d. Bernoulli: xi ∼
B(1, θ)

p(x1:n|θ) =
n∏

i=1

p(xi|θ) = θm(1− θ)n−m

Let us choose the following Beta prior distribution:

p(θ) =
Γ(α)Γ(β)

Γ(α + β)
θα−1(1− θ)β−1

where Γ denotes the Gamma-function. For the time

being, α and β are fixed hyper-parameters. The

posterior distribution is proportional to:

p(θ|x) ∝

with normalisation constant
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Since the posterior is also Beta, we say that the Beta prior

is conjugate with respect to the binomial likelihood. Con-

jugate priors lead to the same form of posterior.

Different hyper-parameters of the Beta Be(α, β) distribution

give rise to different prior specifications:

?
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The generalisation of the Beta distribution is the Dirichlet

distribution D(αi), with density

p(θ) ∝
k∏

i=1

θαi−1
i

where we have assumed k possible thetas. Note that the

Dirichlet distribution is conjugate with respect

to a Multinomial likelihood.
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3 BAYESIAN LEARNING FOR LINEAR-GAUSSIAN MOD-

ELS

In the Bayesian linear prediction setting, we focus on com-

puting the posterior:

p(θ|X, Y ) ∝ p(Y |X, θ)p(θ)

=
(
2πσ2

)−n
2 e
− 1

2σ2 (Y−Xθ)T (Y−Xθ)
p(θ)

We often want to maximise the posterior — that is, we look

for the maximum a poteriori (MAP) estimate. In this case,

the choice of prior determines a type of constraint! For ex-

ample, consider a Gaussian prior θ ∼ N (0, δ2σ2Id). Then

p(θ|X, Y ) ∝
(
2πσ2

)−n
2 e
− 1

2σ2 (Y−Xθ)T (Y−Xθ) (
2πσ2δ2

)−d
2 e
− 1

2δ2σ2 θT θ

Our task is to rearrange terms in the exponents in order to

obtain a simple expression for the posterior distribution.
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?

p(θ|X, Y ) =
∣∣2πσ2M

∣∣−1
2 e
− 1

2σ2 (θ−µ)TM−1(θ−µ)

∝
(
2πσ2

)−n
2 e
− 1

2σ2 (Y−Xθ)T (Y−Xθ) (
2πσ2δ2

)−d
2 e
− 1

2δ2σ2 θT θ
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So the posterior for θ is Gaussian:

p(θ|X, Y ) =
∣∣2πσ2M

∣∣−1
2 e
− 1

2σ2 (θ−µ)TM−1(θ−µ)

with sufficient statistics:

E(θ|X, Y ) = (XXT + δ−2Id)
−1XTY

var(θ|X, Y ) = (XXT + δ−2Id)
−1σ2

The MAP point estimate is:

θ̂MAP = (XXT + δ−2Id)
−1XTY

It is the same as the ridge estimate (except for a trivial

negative sign in the exponent of δ), which results from the

L2 constraint. A flat (“vague”) prior with large variance

(large δ) leads to the ML estimate.

θ̂MAP = θ̂ridge
δ2→0−→ θ̂ML = θ̂SV D = θ̂LS
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2 Full Bayesian Model

In Bayesian inference, we’re interested in the full posterior:

p(θ, σ2, δ2|X, Y ) ∝ p(Y |θ, σ2, X)p(θ|σ2, δ2)p(σ2)p(δ2)

where

Y |θ, σ2, X ∼ N (Xθ, σ2In)

θ ∼ N
(
0, (σ2δ2Id)

)

σ2 ∼ IG (a/2, b/2)

δ2 ∼ IG (α, β)

where IG (α, β) denotes the Inverse-Gamma distribu-

tion.

δ2 ∼ IG (α, β) =
βα

Γ(α)
e−β/δ2

(δ2)−α−1
I[0,∞)(δ

2)

This is the conjugate prior for the variance of a

Gaussian. The generalization of the Gamma distribution,

i.e. the conjugate prior of a covariance matrix is the inverse
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Wishart distribution Σ ∼ IWd(α, αΣ∗), admitting the

density

p(Σ|α, Σ∗) ∝ |Σ|−(α+d+1)/2 exp{−(1/2)tr(αΣ∗Σ−1)}

We can visualise our hierarchical model with the following

graphical model:

?
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The product of likelihood and priors is:

p(θ, σ2, δ2|X, Y ) ∝
(
2πσ2

)−n
2 e
− 1

2σ2 (Y−Xθ)T (Y−Xθ)

×
(
2πσ2δ2

)−d
2 e
− 1

2δ2σ2 θT θ

× (σ2)−a/2−1e
− b

2σ2 (δ2)−α−1e
− β

δ2

We know from our previous work on computing the posterior

for θ that:

p(θ, σ2, δ2|X, Y ) ∝ (2πσ2)−n/2e
− 1

2σ2Y TPY

× (2πσ2δ2)−d/2e
− 1

2σ2 (θ−µ)T M−1(θ−µ)

× (σ2)−a/2−1e
− b

2σ2 (δ2)−α−1e
− β

δ2

where

M−1 = XTX + δ−2Id

µ = MXTY

P = In −XMXT
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From this expression, it is now obvious that

p(θ|σ2, X, Y ) = N (µ, σ2M)

Next, we integrate p(θ, σ2, δ2|X, Y ) over θ in order to get

an expression for p(σ2, δ2|X, Y ). This will allow us to get

an expression for the marginal posterior p(σ2|X, Y ).

?

p(σ2|X, Y ) ∼ IG
(

a + n

2
,
b + Y ′PY

2

)
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Integrating over σ2 gives us an expression for p(δ2|X, Y )

?

Unfortunately this is a nonstandard distribution, thus mak-

ing it hard for us to come up with the normalizing constant.

So we’ll make use of the fact that we know θ and σ2 to derive
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a conditional distribution p(δ2|θ, σ2, X, Y ).

? We know that:

p(θ, σ2, δ2|X, Y ) ∝
(
2πσ2

)−n
2 e
− 1

2σ2 (Y−Xθ)T (Y−Xθ)

×
(
2πσ2δ2

)−d
2 e
− 1

2δ2σ2 θT θ

× (σ2)−a/2−1e
− b

2σ2 (δ2)−α−1e
− β

δ2
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In summary, we can

• Obtain p(θ|σ2, δ2, X, Y ) analytically.

• Obtain p(σ2|δ2, X, Y ) analytically.

• Derive an expression for p(δ2|θ, σ2, X, Y ).

Given δ2, we can obtain analytical expressions for θ and

σ2. But, let’s be a bit more ambitious. Imagine we could

run the following sampling algorithm (known as the Gibbs

Sampler)
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?

1. LOAD data (X, Y ).

2. Compute XTY and XTX .

3. Set, e.g., a = b = 0, α = 2 and β = 10.

4. Sample δ2(0) ∼ IG (α, β).

5. FOR i = 1 to N :

(a) Compute M , P and µ(i) using δ2(i−1).

(b) Sample σ2(i) ∼ IG
(

a+n
2 , b+Y ′PY

2

)
.

(c) Sample θ(i) ∼ N (µ(i), σ2(i)M).

(d) Sample δ2(i) ∼ IG
(

d
2

+ α, β + θ(i)T θ(i)

2σ2(i)

)
.

We can use these samples in order to approximate the inte-

grals of interest with Monte Carlo averages.
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For example, the predictive distribution

p(yn+1|X1:n+1, Y )=

∫
p(yn+1|θ, σ2, xn+1)p(θ, σ2, δ2|X, Y )dθdσ2dδ2

can be approximated with:

p̂(yn+1|X1:n+1, Y ) =
1

N

N∑

i=1

p(yn+1|θ(i), σ2(i), xn+1)

That is,

?

p̂(yn+1|X1:n+1, Y ) =

In the next lecture, we will derive the theory that justifies

the use of this algorithm as well a many other Monte Carlo

algorithms.


