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Lecture 8 - Maximum Likelihood

and Bayesian Learning

OBJECTIVE: In this chapter, we revise maximum like-
lihood (ML) for a simple binary model. We then introduce
Bayesian learning for this simple model and for the linear-
Gaussian regression setting of the previous chapters. The key
difference between the two approaches is that the frequentist
view assumes there is one true model responsible for the ob-
servations, while the Bayesian view assumes that the model
is a random variable with a certain prior distribution. Com-
putationally, the ML problem is one of optimization, while

Bayesian learning is one of integration.

<& MAXIMUM LIKELIHOOD
Frequentist Learning assumes that there is a true model
(say a parametric model with parameters ). The estimate

is denoted 8. It can be found by maximising the likelihood:
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*

0 =argmax  p(w1.,/0)
0

For identical and independent distributed
(ii.d.) data:

p(xlnw) =

L(0) =logp(x1.,]0) =

Let’s illustrate this with a coin-tossing example.
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p(x1:0]0) = HP(ZULW)

With m £ 3 z;, we have

L(0) =

Differentiating, we get

* Let x1.,, with a; € {0, 1}, be i.i.d. Bernoulli:
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<& BAYESIAN LEARNING
Given our prior knowledge p(6) and the data model p(-|0),
the Bayesian approach allows us to update our prior using
the new data x1., as follows:

p(xlzn“g)p(e)

p(e|x1:”) N p(mlzn)

where p(6|z1.,) is the posterior distribution, p(x.,|0)
is the likelihood and p(zy.,) is the marginal likelihood

(evidence). Note

p(z1n) = /p(x1:7l|9)p(9)d9
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Bayesian Prediction

We predict by marginalising over the posterior of the param-

eters

p($n+1|xlzn) = /p(xn+179|x1:n>d0

_ / P(ea | 0)p(B]1,0)d8

Bayesian Model Selection

For a particular model structure M;, we have

_ p(xia|0, Mi)p(0| M)

b 0)x mns M{
( | ! ) p(m1:n|Mi)

Models are selected according to their posterior:

The ratio P(x1.,|M;)/P(x1.,|M;) is known as the Bayes

Factor.
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* Let x1.,, with x; € {0,1}, be i.i.d. Bernoulli: z; ~
B(1,0)

plorald) = [ [ plail6) = 67 (1 — )"
i=1
Let us choose the following Beta prior distribution:

D(@)l(5)

a—1 . 8—1
F(OH—ﬁ)H 1-9)

p(0) =

where I' denotes the Gamma-function. For the time
being, v and [ are fixed hyper-parameters. The

posterior distribution is proportional to:

p(f|z) oc

with normalisation constant
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Since the posterior is also Beta, we say that the Beta prior
is conjugate with respect to the binomial likelihood. Con-

jugate priors lead to the same form of posterior.

Different hyper-parameters of the Beta Be(«, 3) distribution

give rise to different prior specifications:

*

The generalisation of the Beta distribution is the Dirichlet

distribution D(«v;), with density

k
p(0) o< H 9;”71
i=1

where we have assumed k possible thetas. Note that the
Dirichlet distribution is conjugate with respect

to a Multinomial likelihood.
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<& BAYESIAN LEARNING FOR LINEAR-GAUSSIAN MOD-
ELS
In the Bayesian linear prediction setting, we focus on com-

puting the posterior:

p((9|X, Y) (&8 p(Y|X, e)p((g)

_ (2n0%) a0V XOTO-X0) )
We often want to maximise the posterior — that is, we look
for the mazimum a poteriori (MAP) estimate. In this case,
the choice of prior determines a type of constraint! For ex-

ample, consider a Gaussian prior 6§ ~ N(0,6%021;). Then

1 d
) 2

p(0|X,Y) (2%02)7% ¢ a2 (VX0 (Y =X0) (2m06%)

Our task is to rearrange terms in the exponents in order to

obtain a simple expression for the posterior distribution.

__1 g
e 20202

T
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*

p(0|X Y) = |27TO'2M‘_% 67#(97/1’)11/\/[71(97/14)
_n Ny
N R G

1 T
6_262029 0
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So the posterior for 8 is Gaussian:
p(0|X,Y) = |27r02M|7% ¢ 3 0-H MO
with sufficient statistics:

E@|X,Y) = (XXT +02)'XTY
var(0|X,Y) = (XXT + 6721, o?

The MAP point estimate is:
Orap = (XXT+6721)7' XY

[t is the same as the ridge estimate (except for a trivial
negative sign in the exponent of ), which results from the
Ly constraint. A flat (“vague”) prior with large variance

(large §) leads to the ML estimate.

o~ o~ 52—>0 o~ o~ o~
Orvap = Origge —  Onr =0svp =0rs
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2 Full Bayesian Model

In Bayesian inference, we're interested in the full posterior:
p(0,0%, 8% X,Y) oc p(Y0, 0%, X)p(0lo*, 6%)p(a?)p(6”)

where

Y|0,0% X ~ N(X0,0°1,)
0 ~ N(0,(0%6°1))
o* ~ IG(a/2,b/2)
6 ~ IG (o, B)

where ZG (a, 3) denotes the Inverse-Gamma distribu-
tion.
0% ~ IG (0, B) = f—aeﬁ/ﬁ(a?)wﬂm,m)(a?)
(@)
This is the conjugate prior for the variance of a
Gaussian. The generalization of the Gamma distribution,

i.e. the conjugate prior of a covariance matrix is the inverse
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Wishart distribution ¥ ~ IW;(«, aX*), admitting the
density

p(Ela, T7) o [B7 D exp{—(1/2)tr (oS}

We can visualise our hierarchical model with the following

graphical model:

*
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The product of likelihood and priors is:
p(8,0% 0% X,Y) o (2%02)*% o 22V =XOT(Y=X0)
X (271'(7252)_% oot
X (02)_a/2_16*#(52)—a—167(§%

We know from our previous work on computing the posterior

for 6 that:

p(0,0% 8% X,Y) (27?02)7"/26_ﬁYTPY

y (27mz52)—d/Qefﬁ(%u)TM’l(H*u)
« (0_2)#1/2716—%7(62)704716—5%
where

M = XTX 4671,
= MXTY

=
|

P =1 —XMx"
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From this expression, it is now obvious that

Next, we integrate p(6, 02, 6% X,Y) over 6 in order to get
an expression for p(o?,§?|X,Y). This will allow us to get

an expression for the marginal posterior p(a?| X, Y).

*
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p(02|X,Y) ~ TG <a+n b+Y/PY)

2 2

Integrating over o gives us an expression for p(6%X,Y)

*

Unfortunately this is a nonstandard distribution, thus mak-
ing it hard for us to come up with the normalizing constant.

So we'll make use of the fact that we know @ and o2 to derive
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a conditional distribution p(62]0, 02, X,Y). In summary, we can

~ Wo kuow that. e Obtain p(f|c?, 6%, X,Y) analytically.

n o Obtain p(2|0%, X, Y) analytically.
p(0,0°,8*1X,Y) o (2m0°) 2 oz (Y=XOT (Y =X0)

_d __ 1 gT : nac) 2 2
% (270252) % oot e Derive an expression for p(d°|6,0°, X,Y).
__b_ _B . . . .
X (02)712 e T2 (§2) 0T Given 6% we can obtain analytical expressions for 6 and
2

o°. But, let’s be a bit more ambitious. Imagine we could
run the following sampling algorithm (known as the Gibbs
Sampler)
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*
1. LOAD data (X,Y).
2. Compute XTY and X7 X.
3.5et,eg,a=b=0, a=2and g =10.
4. Sample 0°0) ~ ZG (o, 3).
5. FORi=1to N:

(
(

a) Compute M, P and p using 620~

b) Sample o ) ~ TG (a+n b+Y2PY)

)
)
(c) Sample 0 ~ N (D, o2D M),
()T ()
(d) Sample 520 ~ TG (% +oa, 0+ OQUTQL))

We can use these samples in order to approximate the inte-

grals of interest with Monte Carlo averages.
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For example, the predictive distribution

p(yrz+1 |X1:n+1, Y) :/p<yn+1 |0> 02; xn+1)p(9> 027 52|Xa Y)d9d0'2d52

can be approximated with:

Z/)\(yn+l|X1:n+17 ZP yn+l|9 xn+1)

That is,

*

ﬁ(yn-i-l |X1:n+17 Y) =

In the next lecture, we will derive the theory that justifies
the use of this algorithm as well a many other Moonte Carlo

algorithms.



