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Lecture 5 - Probability Revision

OBJECTIVE: Revise the fundamental concepts of prob-

ability, including marginalization, conditioning, Bayes rule

and expectation.

3 PROBABILITY

Probability theory is the formal study of the laws of

chance. It is our tool for dealing with uncertainty. Notation:

• Sample space: is the set Ω of all outcomes of an

experiment.

• Outcome: what we observed. We use ω ∈ Ω to

denote a particular outcome. e.g. for a die we have

Ω = {1, 2, 3, 4, 5, 6} and ω could be any of these six

numbers.

• Event: is a subset of Ω that is well defined (measur-

able). e.g. the event A = {even} if w ∈ {2, 4, 6}
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Why do we need measure?

?

Frequentist Perspective

Let probability be the frequency of events.

?
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Axiomatic Perspective

The frequentist interpretation has some shortcomings when

we ask ourselves questions like

• what is the probability that David will sleep with Anne?

• What is the probability that the Panama Canal is

longer than the Suez Canal?

The axiomatic view is a more elegant mathematical solu-

tion. Here, a probabilistic model consists of the triple

(Ω,F , P ), where Ω is the sample space, F is the sigma-field

(collection of measurable events) and P is a function map-

ping F to the interval [0, 1]. That is, with each event A ∈ F
we associate a probability P (A).

Some outcomes are not measurable so we have to assign

probabilities to F and not Ω. Fortunately, in this course ev-

erything will be measurable so we need no concern ourselves

with measure theory. We do have to make sure the following

two axioms apply:

CPSC-540: Machine Learning 42

1. P (∅) = 0 ≤ p(A) ≤ 1 = P (Ω)

2. For disjoint sets An, n ≥ 1, we have

P

( ∞∑

n=1

An

)
=
∞∑

n=1

P (An)

?

If the sets overlap:

?

P (A + B) = P (A) + P (B)− P (AB)



CPSC-540: Machine Learning 43

If the events A and B are independent, we have P (AB) =

P (A)P (B).

? Let P (HIV ) = 1/500 be the probability of contract-

ing HIV by having unprotected sex. If one has unpro-

tected sex twice, the probability of contracting HIV be-

comes:

What if we have unprotected sex 500 times?
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Conditional Probability

P (A|B) ,
P (AB)

P (B)

where P (A|B) is the conditional probability of A given

that B occurs, P (B) is the marginal probability of B

and P (AB) is the joint probability of A and B. In

general, we obtain a chain rule

P (A1:n) = P (An|A1:n−1)P (An−1|A1:n−2) . . . P (A2|A1)P (A1)

? Assume we have an urn with 3 red balls and 1 blue

ball: U = {r, r, r, b}. What is the probability of drawing

(without replacement) 2 red balls in the first 2 tries?
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Marginalisation

Let the sets B1:n be disjoint and
⋃n

i=1 Bi = Ω. Then

P (A) =
n∑

i=1

P (A, Bi)

? Proof:

? What is the probability that the second ball drawn

from our urn will be red?
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Bayes Rule

Bayes rule allows us to reverse probabilities:

P (A|B) =
P (B|A)P (A)

P (B)

Combinining this with marginalisation, we obtain a powerful

tool for statistical modelling:

P (modeli|data) =
P (data|modeli)P (modeli)∑M

j=1 P (data|modelj)P (modelj)

That is, if we have prior probabilities for each model and

generative data models, we can compute how likely each

model is a posteriori (in light of our prior knowledge and

the evidence brought in by the data).
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Discrete random variables

Let E be a discrete set, e.g. E = {0, 1}. A discrete

random variable (r.v.) is a map from Ω to E:

X(w) : Ω 7→ E

such that for all x ∈ E we have {w|X(w) ≤ x} ∈ F . Since

F denotes the measurable sets, this condition simply says

that we can compute (measure) the probability P (X = x).

CPSC-540: Machine Learning 48

? Assume we are throwing a die and are interested in

the events E = {even, odd}. Here Ω = {1, 2, 3, 4, 5, 6}.
The r.v. takes the value X(w) = even if w ∈ {2, 4, 6}
and X(w) = odd if w ∈ {1, 3, 5}. We describe this r.v.

with a probability distribution p(xi) = P (X =

xi) = 1
2, i = 1, . . . , 2

The cumulative distribution function is defined as

F (x) = P (X ≤ x) and would for this example be:

?
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Bernoulli Random Variables

Let E = {0, 1}, P (X = 1) = λ, and P (X = 0) = 1− λ.

We now introduce the set indicator variable. (This is a very

useful notation.)

IA(w) =





1 if w ∈ A;

0 otherwise.

Using this convention, the probability distribution of a Bernoulli

random variable reads:

p(x) = λI{1}(x)(1− λ)I{0}(x).

Expectation of Discrete Random Variables

The expectation of a discrete random variable X is

E[X ] =
∑

E

xip(xi)
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The expectation operator is linear, so E(ax1+bx2) = aE(x1)+

bE(x2). In general, the expectation of a function f(X) is

E[f(X)] =
∑

E

f(xi) p(xi)

Mean: µ , E(X)

Variance: σ2 , E[(X − µ)2]

? For the set indicator variable IA(ω),

E[IA(ω)] =
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Continuous Random Variables

A continuous r.v. is a map to a continuous space, X(w) :

Ω 7→ R, under the usual measurability conditions. The cu-

mulative distribution function F (x) (cdf) is defined

by

F (x) ,

x∫

−∞

p(y) dy = P (X ≤ x)

where p(x) denotes the probability density function

(pdf). For an infinitesimal measure dx in the real line, dis-

tributions F and densities p are related as follows:

F (dx) = p(x)dx = P (X ∈ dx).

?
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Univariate Gaussian Distribution

The pdf of a Gaussian distribution is given by

p(x) = 1√
2πσ2

e
− 1

2σ2
(x−µ)2

.

?

Our short notation for Gaussian variables is X ∼ N (µ, σ2).
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Univariate Uniform Distribution

A random variable X with a uniform distribution between

0 to 1 is written as X ∼ U[0,1](x)

?

Multivariate Distributions

Let f(u, v) be a pdf in 2-D. The cdf is defined by

F (x, y) =
x∫
−∞

y∫
−∞

f(u, v) du dv = P (X ≤ x, Y ≤ y).
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1 Bivariate Uniform Distribution

X ∼ U[0,1]2(x)

?

Multivariate Gaussian Distribution

Let x ∈ R
n. The pdf of an n-dimensional Gaussian is given

by

p(x) =
1

2πn/2|Σ|1/2
e−

1

2
(x−µ)T Σ−1(x−µ)

where

µ =




µ1

:

µn


 =




E(x1)

:

E(xn)
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and

Σ =




σ11 · · ·σ1n

· · ·
σn1 · · ·σnn


 = E[(X − µ)(X − µ)T ]

with σij = E[Xi − µi)(Xj − µj)
T ].

We can interpret each component of x, for example, as

a feature of an image such as colour or texture. The term

1
2
(x−µ)TΣ−1(x−µ) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and µ.

? What is
∫
· · ·
∫

e−
1

2
(x−µ)T Σ−1(x−µ) dx?
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Linear Operations

Let A ∈ R
k×n, b ∈ R

k be given matrices, and X ∈ R
n

be a random variable with mean E(X) = µx ∈ R
n and

covariance cov(X) = ΣX ∈ R
n×n. We define a new random

variable

Y = AX + b

If X ∼ N(µx, Σx), then Y ∼ N(µy, Σy) where

?

µy = E(Y ) =

Σy =
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Finally, we define the cross-covariance as

ΣXY = E[(X − µX)(Y − µY )′].

X and Y are uncorrelated if ΣXY = 0. So,

Σ =


ΣXX 0

0 ΣY Y


 .
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Lecture 6 - Linear Supervised Learn-

ing

OBJECTIVE: Linear regression is a supervised learn-

ing task. It is of great interest because:

• Many real processes can be approximated with linear

models.

• Linear regression appears as part of larger problems.

• It can be solved analytically.

• It illustrates many of the ideas in machine learning.
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Given the data {x1:n, y1:n}, with xi ∈ R
d and yi ∈ R, we

want to fit a hyper-plane that maps x to y.

?

Mathematically, the linear model is expressed as follows:

ŷi = θ0 +
d∑

j=1

xijθj

We let xi,0 = 1 to obtain

ŷi =
d∑

j=0

xijθj
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In matrix form, this expression is

Ŷ = Xθ




y1

...

yn


 =




x10 · · · x1d

... ... ...

xn0 · · · xnd







θ0

...

θd




If we have several outputs yi ∈ R
c, our linear regression

expression becomes:

?

We will present several approaches for computing θ.
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3 OPTIMIZATION APPROACH

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

C(θ) = (Y −Xθ)T (Y −Xθ)

?
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We will need the following result from matrix differentia-

tion: ∂A
∂θ = AT .

?
∂C

∂θ
=

These are the normal equations. The solution (esti-

mate) is:

θ̂ =

The corresponding predictions are

Ŷ = HY =

where H is the “hat” matrix.
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3 GEOMETRIC APPROACH

?

XT (Y − Ŷ ) =
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Maximum Likelihood

?
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If our errors are Gaussian distributed, we can use the model

Y = Xθ +N (0, σ2I)

Note that the mean of Y is Xθ and that its variance is

σ2I . So we can equivalently write this expression using the

probability density of Y given X , θ and σ:

p(Y |X, θ, σ) =
(
2πσ2

)−n/2
e
− 1

2σ2
(Y−Xθ)T (Y−Xθ)

The maximum likelihood (ML) estimate of θ is obtained by

taking the derivative of the log-likelihood, log p(Y |X, θ, σ).

The idea of maximum likelihood learning is to maximise the

likelihood of seeing some data Y by modifying the parame-

ters (θ, σ).
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The ML estimate of θ is:

?
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Proceeding in the same way, the ML estimate of σ is:

?
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Lecture 7 - Ridge Regression

OBJECTIVE: Here we learn a cost function for linear

supervised learning that is more stable than the one in the

previous lecture. We also introduce the very important no-

tion of regularization.

All the answers so far are of the form

θ̂ = (XXT )−1XTY

They require the inversion of XXT . This can lead to prob-

lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:

θ̂ = (XXT + δ2Id)
−1XTY

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

C(θ) = (Y −Xθ)T (Y −Xθ) + δ2θTθ
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? Proof:

It is useful to visualise the quadratic optimisation function

and the constraint region.
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?

That is, we are solving the following constrained opti-

misation problem:

min
θ : θT θ ≤ t

{
(Y −Xθ)T (Y −Xθ)

}

Large values of θ are penalised. We are shrinking θ towards

zero. This can be used to carry out feature weighting.

An input xi,d weighted by a small θd will have less

influence on the ouptut yi.
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Spectral View of LS and Ridge Regression

Again, let X ∈ R
n×d be factored as

X = UΣV T =
d∑

i=1

uiσiv
T
i ,

where we have assumed that the rank of X is d.

? The least squares prediction is:

ŶLS =
d∑

i=1

uiu
T
i Y
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? Likewise, for ridge regression we have:

Ŷridge =

d∑

i=1

σ2
i

σ2
i + δ2

uiu
T
i Y

The filter factor

fi =
σ2

i

σ2
i + δ2

penalises small values of σ2 (they go to zero at a faster rate).
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?

Also, by increasing δ2 we are penalising the weights:

?
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Small eigenvectors tend to be wobbly. The Ridge filter fac-

tor fi gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).

The smoothness parameter δ2 is often estimated by cross-

validation or Bayesian hierarchical methods.

Minimax and cross-validation

Cross-validation is a widely used technique for choosing δ.

Here’s an example:

?


