Lecture 5 - Probability Revision

39

OBJECTIVE: Revise the fundamental concepts of probability, including marginalization, conditioning, Bayes rule and expectation.

♦ PROBABILITY

Probability theory is the formal study of the laws of chance. It is our tool for dealing with uncertainty. Notation:

- Sample space: is the set Ω of all outcomes of an experiment.
- Outcome: what we observed. We use ω ∈ Ω to denote a particular outcome. e.g. for a die we have Ω = {1, 2, 3, 4, 5, 6} and ω could be any of these six numbers.
- Event: is a subset of Ω that is well defined (measurable). *e.g.* the event $A = \{even\}$ if $w \in \{2, 4, 6\}$

Why do we need measure?

*

Frequentist Perspective

Let probability be the frequency of events.

Axiomatic Perspective

The frequentist interpretation has some shortcomings when we ask ourselves questions like

- what is the probability that David will sleep with Anne?
- What is the probability that the Panama Canal is longer than the Suez Canal?

The axiomatic view is a more elegant mathematical solution. Here, a **probabilistic model** consists of the triple (Ω, \mathcal{F}, P) , where Ω is the sample space, \mathcal{F} is the sigma-field (collection of measurable events) and P is a function mapping \mathcal{F} to the interval [0, 1]. That is, with each event $A \in \mathcal{F}$ we associate a probability P(A).

Some outcomes are not measurable so we have to assign probabilities to \mathcal{F} and not Ω . Fortunately, in this course everything will be measurable so we need no concern ourselves with measure theory. We do have to make sure the following two axioms apply:

- 1. $P(\emptyset) = 0 \le p(A) \le 1 = P(\Omega)$
- 2. For **disjoint sets** A_n , $n \ge 1$, we have

$$P\left(\sum_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

If the sets overlap:

$$P(A+B) = P(A) + P(B) - P(AB)$$

41

If the events A and B are **independent**, we have P(AB) = P(A)P(B).

43

* Let P(HIV) = 1/500 be the probability of contracting HIV by having unprotected sex. If one has unprotected sex twice, the probability of contracting HIV becomes:

What if we have unprotected sex 500 times?

Conditional Probability

$$P(A|B) \triangleq \frac{P(AB)}{P(B)}$$

where P(A|B) is the **conditional probability** of A given that B occurs, P(B) is the **marginal probability** of B and P(AB) is the **joint probability** of A and B. In general, we obtain a **chain rule**

$$P(A_{1:n}) = P(A_n | A_{1:n-1}) P(A_{n-1} | A_{1:n-2}) \dots P(A_2 | A_1) P(A_1)$$

* Assume we have an urn with 3 red balls and 1 blue ball: $U = \{r, r, r, b\}$. What is the probability of drawing (without replacement) 2 red balls in the first 2 tries?

Marginalisation

Let the sets $B_{1:n}$ be disjoint and $\bigcup_{i=1}^{n} B_i = \Omega$. Then

$$P(A) = \sum_{i=1}^{n} P(A, B_i)$$

45

 \star Proof:

 \star What is the probability that the second ball drawn from our urn will be red?

Bayes Rule

Bayes rule allows us to reverse probabilities:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Combinining this with marginalisation, we obtain a powerful tool for statistical modelling:

$$P(model_i|data) = \frac{P(data|model_i)P(model_i)}{\sum_{j=1}^{M} P(data|model_j)P(model_j)}$$

That is, if we have **prior** probabilities for each model and generative data models, we can compute how likely each model is **a posteriori** (in light of our prior knowledge and the evidence brought in by the data). Discrete random variables

Let E be a discrete set, e.g. $E = \{0, 1\}$. A **discrete** random variable (r.v.) is a map from Ω to E:

$$X(w):\Omega\mapsto E$$

such that for all $x \in E$ we have $\{w | X(w) \leq x\} \in \mathcal{F}$. Since \mathcal{F} denotes the measurable sets, this condition simply says that we can compute (measure) the probability P(X = x).

* Assume we are throwing a die and are interested in the events $E = \{even, odd\}$. Here $\Omega = \{1, 2, 3, 4, 5, 6\}$. The r.v. takes the value X(w) = even if $w \in \{2, 4, 6\}$ and X(w) = odd if $w \in \{1, 3, 5\}$. We describe this r.v. with a **probability distribution** $p(x_i) = P(X = x_i) = \frac{1}{2}, i = 1, ..., 2$

The **cumulative distribution function** is defined as $F(x) = P(X \le x)$ and would for this example be:

47

Bernoulli Random Variables

Let
$$E = \{0, 1\}, P(X = 1) = \lambda$$
, and $P(X = 0) = 1 - \lambda$.

We now introduce the *set indicator variable*. (This is a very useful notation.)

49

$$\mathbb{I}_{A}(w) = \begin{cases} 1 & if \qquad w \in A; \\ 0 & otherwise. \end{cases}$$

Using this convention, the probability distribution of a **Bernoulli** random variable reads:

$$p(x) = \lambda^{\mathbb{I}_{\{1\}}(x)} (1 - \lambda)^{\mathbb{I}_{\{0\}}(x)}.$$

Expectation of Discrete Random Variables

The expectation of a discrete random variable X is

$$\mathbb{E}[X] = \sum_{E} x_i p(x_i)$$

CPSC-540: Machine Learning

The expectation operator is linear, so $\mathbb{E}(ax_1+bx_2) = a\mathbb{E}(x_1)+b\mathbb{E}(x_2)$. In general, the expectation of a function f(X) is

$$\mathbb{E}[f(X)] = \sum_{E} f(x_i) \, p(x_i)$$

Mean:
$$\mu \triangleq \mathbb{E}(X)$$

Variance: $\sigma^2 \triangleq \mathbb{E}[(X - \mu)^2]$

 \star For the set indicator variable $\mathbb{I}_A(\omega),$ $\mathbb{E}[\mathbb{I}_A(\omega)] =$

Continuous Random Variables

A continuous r.v. is a map to a continuous space, X(w): $\Omega \mapsto \mathbb{R}$, under the usual measurability conditions. The **cu mulative distribution function** F(x) (cdf) is defined by

51

$$F(x) \triangleq \int_{-\infty}^{\infty} p(y) \, dy = P(X \le x)$$

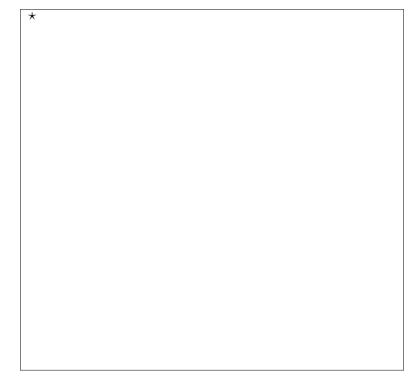
where p(x) denotes the **probability density function** (pdf). For an infinitesimal measure dx in the real line, distributions F and densities p are related as follows:

 $F(dx) = p(x)dx = P(X \in dx).$

Univariate Gaussian Distribution

The pdf of a Gaussian distribution is given by

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$



Our short notation for Gaussian variables is $X \sim \mathcal{N}(\mu, \sigma^2)$.

Univariate Uniform Distribution

A random variable X with a uniform distribution between 0 to 1 is written as $X \sim \mathcal{U}_{[0,1]}(x)$

53

Multivariate Distributions

Let f(u, v) be a pdf in 2-D. The cdf is defined by

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv = P(X \le x, Y \le y).$$

1 Bivariate Uniform Distribution

 $X \sim \mathcal{U}_{[0,1]^2}(x)$

Multivariate Gaussian Distribution

Let $x \in \mathbb{R}^n$. The pdf of an n-dimensional Gaussian is given by

$$p(x) = \frac{1}{2\pi^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

where

$$\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} \mathbb{E}(x_1) \\ \vdots \\ \mathbb{E}(x_n) \end{pmatrix}$$

and

$$\Sigma = \begin{pmatrix} \sigma_{11} \cdots \sigma_{1n} \\ \cdots \\ \sigma_{n1} \cdots \sigma_{nn} \end{pmatrix} = \mathbb{E}[(X - \mu)(X - \mu)^T]$$

55

with $\sigma_{ij} = \mathbb{E}[X_i - \mu_i)(X_j - \mu_j)^T].$

We can interpret each component of x, for example, as a feature of an image such as colour or texture. The term $\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)$ is called the **Mahalanobis distance**. Conceptually, it measures the distance between x and μ .

* What is $\int \cdots \int e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} dx$?

Linear Operations

Let $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$ be given matrices, and $X \in \mathbb{R}^n$ be a random variable with mean $\mathbb{E}(X) = \mu_x \in \mathbb{R}^n$ and covariance $cov(X) = \Sigma_X \in \mathbb{R}^{n \times n}$. We define a new random variable

$$Y = AX + b$$

If $X \sim N(\mu_x, \Sigma_x)$, then $Y \sim N(\mu_y, \Sigma_y)$ where

*	$\mu_y = \mathbb{E}(Y) =$
	$\Sigma_y =$
	$ au_y -$

Finally, we define the **cross-covariance** as

$$\Sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]'$$

57

X and Y are **uncorrelated** if $\Sigma_{XY} = 0$. So,

$$\Sigma = \begin{pmatrix} \Sigma_{XX} & 0\\ 0 & \Sigma_{YY} \end{pmatrix}.$$

Lecture 6 - Linear Supervised Learning

OBJECTIVE: Linear regression is a supervised learning task. It is of great interest because:

- Many real processes can be approximated with linear models.
- Linear regression appears as part of larger problems.
- It can be solved analytically.
- It illustrates many of the ideas in machine learning.

Given the data $\{x_{1:n}, y_{1:n}\}$, with $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, we want to fit a hyper-plane that maps x to y.

59

Mathematically, the linear model is expressed as follows:

$$\widehat{y}_i = \theta_0 + \sum_{j=1}^d x_{ij} \theta_j$$

We let $x_{i,0} = 1$ to obtain

$$\widehat{y}_i = \sum_{j=0}^d x_{ij} \theta_j$$

In matrix form, this expression is

 $\widehat{Y} = X\theta$

y_1		x_{10}		x_{1d}	θ_0
÷	=	:	÷	÷	÷
y_n		x_{n0}		x_{nd}	θ_d

If we have several outputs $y_i \in \mathbb{R}^c$, our linear regression expression becomes:

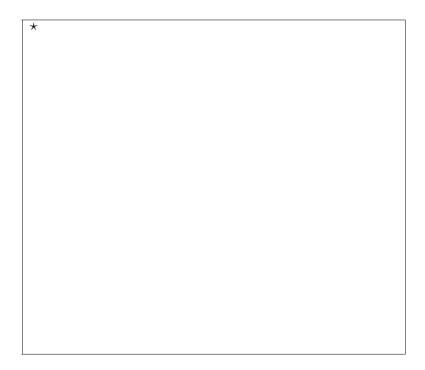
We will present several approaches for computing θ .

\diamondsuit OPTIMIZATION APPROACH

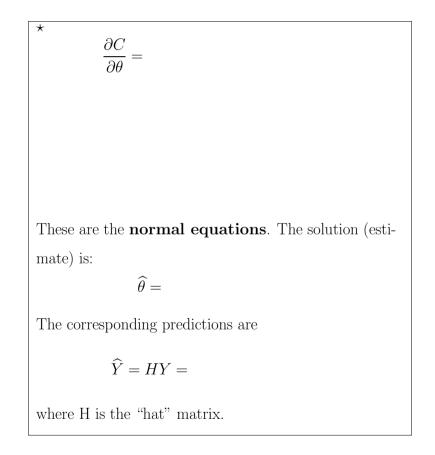
Our aim is to minimise the quadratic cost between the output labels and the model predictions

61

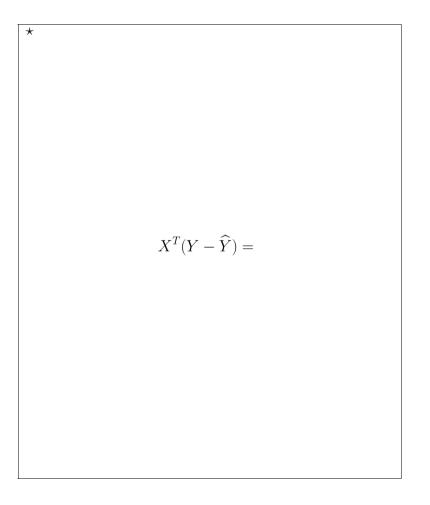
 $C(\theta) = (Y - X\theta)^T (Y - X\theta)$



We will need the following result from matrix differentiation: $\frac{\partial A}{\partial \theta} = A^T$.

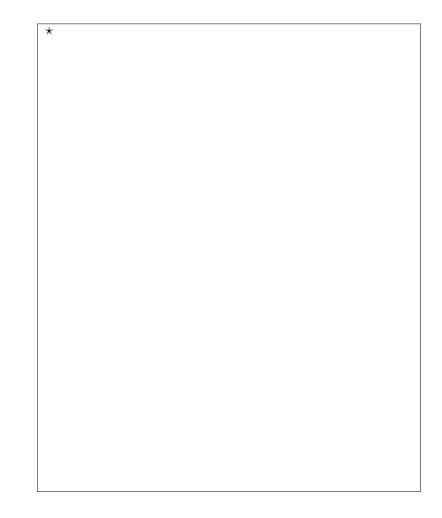


♦ GEOMETRIC APPROACH



63

Maximum Likelihood



If our errors are Gaussian distributed, we can use the model

65

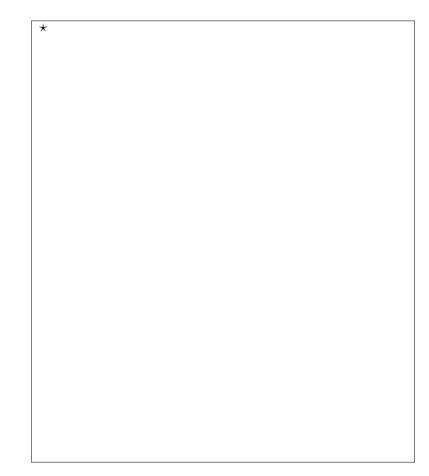
$$Y = X\theta + \mathcal{N}(0, \sigma^2 I)$$

Note that the mean of Y is $X\theta$ and that its variance is $\sigma^2 I$. So we can equivalently write this expression using the probability density of Y given X, θ and σ :

$$p(Y|X,\theta,\sigma) = \left(2\pi\sigma^2\right)^{-n/2} e^{-\frac{1}{2\sigma^2}(Y-X\theta)^T(Y-X\theta)}$$

The maximum likelihood (ML) estimate of θ is obtained by taking the derivative of the log-likelihood, $\log p(Y|X, \theta, \sigma)$. The idea of maximum likelihood learning is to maximise the likelihood of seeing some data Y by modifying the parameters (θ, σ) .

The ML estimate of θ is:



*

Proceeding in the same way, the ML estimate of σ is:

67

Lecture 7 - Ridge Regression

OBJECTIVE: Here we learn a cost function for linear supervised learning that is more stable than the one in the previous lecture. We also introduce the very important notion of **regularization**.

All the answers so far are of the form

 $\widehat{\theta} = (XX^T)^{-1}X^TY$

They require the inversion of XX^T . This can lead to problems if the system of equations is poorly conditioned. A solution is to add a small element to the diagonal:

 $\widehat{\theta} = (XX^T + \delta^2 I_d)^{-1} X^T Y$

This is the ridge regression estimate. It is the solution to the following **regularised quadratic cost function**

$$C(\theta) = (Y - X\theta)^T (Y - X\theta) + \delta^2 \theta^T \theta$$

* Proof:

It is useful to visualise the quadratic optimisation function and the constraint region. CPSC-540: Machine Learning

That is, we are solving the following **constrained optimisation** problem:

$$\min_{\boldsymbol{\theta} \,:\,\, \boldsymbol{\theta}^T \boldsymbol{\theta} \,\leq\, t} \left\{ (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\theta})^T (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\theta}) \right\}$$

Large values of θ are penalised. We are **shrinking** θ towards zero. This can be used to carry out **feature weighting**. **An input** $x_{i,d}$ **weighted by a small** θ_d **will have less influence on the ouptut** y_i .

Spectral View of LS and Ridge Regression

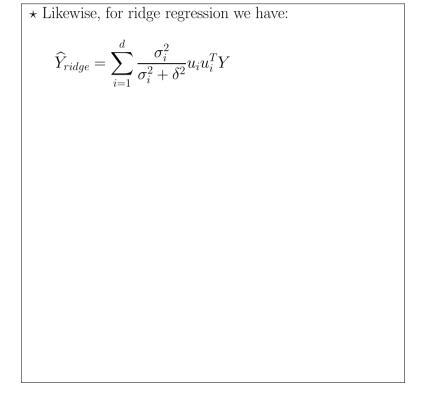
Again, let $X \in \mathbb{R}^{n \times d}$ be factored as

$$X = U\Sigma V^T = \sum_{i=1}^d u_i \sigma_i v_i^T,$$

71

where we have assumed that the rank of X is d.

* The least squares prediction is: $\widehat{Y}_{LS} = \sum_{i=1}^{d} u_i u_i^T Y$



The filter factor

$$f_i = \frac{\sigma_i^2}{\sigma_i^2 + \delta^2}$$

penalises small values of σ^2 (they go to zero at a faster rate).

*

73

Also, by increasing δ^2 we are penalising the weights:

*

Small eigenvectors tend to be wobbly. The Ridge filter factor f_i gets rid of the wobbly eigenvectors. Therefore, the predictions tend to be more stable (smooth, regularised).

The smoothness parameter δ^2 is often estimated by crossvalidation or Bayesian hierarchical methods.

Minimax and cross-validation

Cross-validation is a widely used technique for choosing δ . Here's an example:

