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Lecture 5 - Probability Revision

OBJECTIVE: Revise the fundamental concepts of prob-
ability, including marginalization, conditioning, Bayes rule

and expectation.

<& PROBABILITY
Probability theory is the formal study of the laws of

chance. It is our tool for dealing with uncertainty. Notation:

e Sample space: is the set € of all outcomes of an

experiment.

e OQutcome: what we observed. We use w € 2 to
denote a particular outcome. e.g. for a die we have
Q = {1,2,3,4,5,6} and w could be any of these six

numbers.

e Event: is a subset of ) that is well defined (measur-

able). e.g. the event A = {even} if w € {2,4,6}

CPSC-540: Machine Learning

40

Why do we need measure?

*

Frequentist Perspective

Let probability be the frequency of events.

*
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Axiomatic Perspective

The frequentist interpretation has some shortcomings when

we ask ourselves questions like
e what is the probability that David will sleep with Anne?

o What is the probability that the Panama Canal is

longer than the Suez Canal?

The axiomatic view is a more elegant mathematical solu-
tion. Here, a probabilistic model consists of the triple
(92, F, P), where € is the sample space, F is the sigma-field
(collection of measurable events) and P is a function map-
ping F to the interval [0, 1]. That is, with each event A € F
we associate a probability P(A).

Some outcomes are not measurable so we have to assign
probabilities to F and not €2. Fortunately, in this course ev-
erything will be measurable so we need no concern ourselves
with measure theory. We do have to make sure the following

two axioms apply:
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1 P(0) =0 < p(4) < 1= P(Q)

2. For disjoint sets A,, n > 1, we have

P <i An) = iP(An)

n=1

If the sets overlap:

*

P(A+B)=P(A)+ P(B)— P(AB)
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If the events A and B are independent, we have P(AB) =
P(A)P(B).

* Let P(HIV') =1/500 be the probability of contract-
ing HIV by having unprotected sex. If one has unpro-
tected sex twice, the probability of contracting HIV be-

co1nes:

What if we have unprotected sex 500 times?
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Conditional Probability

s P(AB)

- P(B)

where P(A|B) is the conditional probability of A given

P(A|B)

that B occurs, P(B) is the marginal probability of B
and P(AB) is the joint probability of A and B. In

general, we obtain a chain rule

P(A1.,) = P(A,|A1—1)P(An—1|A1—2) ... P(As] A1) P(Ay)

* Assume we have an urn with 3 red balls and 1 blue
ball: U = {r,r,r,b}. What is the probability of drawing

(without replacement) 2 red balls in the first 2 tries?
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Marginalisation

Let the sets By, be disjoint and [ J;_; B; = Q. Then

P(4)= Y P(4.)

* Proof:

* What is the probability that the second ball drawn

from our urn will be red?
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Bayes Rule

Bayes rule allows us to reverse probabilities:

P(B|A)P(A)
P(AB) = ——F———=
(4]B) P(B)
Combinining this with marginalisation, we obtain a powerful

tool for statistical modelling:

P(data|model;) P(model;)

P(model;|data) = —;
> i=1 P(datalmodel;) P(model;)

That is, if we have prior probabilities for each model and
generative data models, we can compute how likely each
model is a posteriori (in light of our prior knowledge and

the evidence brought in by the data).
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Discrete random variables

Let E be a discrete set, eg. E = {0,1}. A discrete

random variable (r.v.) is a map from 2 to E:
X(w): Q—FE

such that for all z € E we have {w|X (w) < z} € F. Since
F denotes the measurable sets, this condition simply says

that we can compute (measure) the probability P(X = x).
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* Assume we are throwing a die and are interested in
the events E' = {even, odd}. Here Q = {1,2,3,4,5,6}.
The r.v. takes the value X (w) = even if w € {2,4,6}
and X (w) = odd if w € {1,3,5}. We describe this r.v.
with a probability distribution p(z;) = P(X =

Ti)=13,1=1,...,2

The cumulative distribution function is defined as

F(z) = P(X < z) and would for this example be:

*
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Bernoulli Random Variables

Let E={0,1}, P(X =1)= X and P(X =0)=1— A\
We now introduce the set indicator variable. (This is a very

useful notation.)

1 aof w € A

0 otherwise.

Using this convention, the probability distribution of a Bernoulli

random variable reads:

plz) = )\H{u(i‘)(l _ )\)H{o}(l’)_

Expectation of Discrete Random Variables

The expectation of a discrete random variable X is

E[X] = 3 ap(x,)
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The expectation operator is linear, so E(az1+bxs) = aE(xq)+

bE(xs). In general, the expectation of a function f(X) is

E[f(X)] = Z f(z:) plzi)

Mean: p = E(X)
Variance: o2 2 E[(X — u)?

* For the set indicator variable I4(w),

E[ls(w)] =
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Continuous Random Variables

A continuous r.v. is a map to a continuous space, X (w) :
2 — R, under the usual measurability conditions. The cu-
mulative distribution function F(z) (cdf) is defined

by

xT

F(z) & / ply) dy = P(X < )

—00

where p(x) denotes the probability density function
(pdf). For an infinitesimal measure dz in the real line, dis-

tributions F' and densities p are related as follows:

F(dz) = p(x)dx = P(X € dx).
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Univariate Gaussian Distribution

The pdf of a Gaussian distribution is given by

1 2
I
1 . ( u).

plx) = Vono? 207

Our short notation for Gaussian variables is X ~ N (u, o?).



CPSC-540: Machine Learning 53

CPSC-540: Machine Learning 54

Univariate Uniform Distribution

A random variable X with a uniform distribution between

0 to 1 is written as X ~ Uy 1)()

*

Maultivariate Distributions

Let f(u,v) be a pdf in 2-D. The cdf is defined by

F(z,y) = fI fyf(u,v)dudU:P(ng,ng).

—00 —O0

1 Bivariate Uniform Distribution

X ~ Z/{[OJ]Q(x)

Multivariate Gaussian Distribution

Let x € R™. The pdf of an n-dimensional Gaussian is given

by

pl) = 27m/21|2|1/2‘€%(z”)Tzl(I”)
where
i E(21)
= —

fhn E(z,)
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and

011 01n

with oy = E[X; — ) (X — py)"].

We can interpret each component of x, for example, as
a feature of an image such as colour or texture. The term
3(x—p)"S7 (z— p) is called the Mahalanobis distance.

Conceptually, it measures the distance between z and pu.

* What is [ -~~fe’%($’“)TZ_l(x’“) dx?
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Linear Operations

Let A € R b € R¥ be given matrices, and X € R”
be a random variable with mean E(X) = p, € R" and
covariance cov(X) = Xy € R™". We define a new random

variable

Y=AX+b

If X ~ N(uz,2,;), then Y ~ N(u,,>,) where

*
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Finally, we define the cross-covariance as

Yxy = Bl(X — pux)(Y — py)].

X and Y are uncorrelated if X xy = 0. So,

Lecture 6 - Linear Supervised Learn-
ing

OBJECTIVE: Linear regression is a supervised learn-

ing task. It is of great interest because:

e Many real processes can be approximated with linear

models.
e Linear regression appears as part of larger problems.
e [t can be solved analytically.

e [t illustrates many of the ideas in machine learning.
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Given the data {21.,,y1.,}, with z; € R? and y; € R, we

want to fit a hyper-plane that maps x to y.

*

Mathematically, the linear model is expressed as follows:

d
?J\i = 9() + Z :L’iﬂj
j=1

We let x; 9 = 1 to obtain

d
Yi = E z;;0,
j=0
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In matrix form, this expression is

Y = X0
n T " Tid o
Yn Tno * Tnd 9(1

If we have several outputs y; € R our linear regression

expression becomes:

*

We will present several approaches for computing 6.
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< OPTIMIZATION APPROACH

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

CO) =Y - X0 (Y - X0)
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We will need the following result from matrix differentia-

s 0A
tion: 57 = AT
*
90 _
00

These are the normal equations. The solution (esti-
mate) is:

h—
The corresponding predictions are

Y = HY =

where H is the “hat” matrix.
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<& GEOMETRIC APPROACH
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Maximum Likelihood
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If our errors are Gaussian distributed, we can use the model
Y = X0+ N(0,0°1)

Note that the mean of Y is X6 and that its variance is
o%I. So we can equivalently write this expression using the

probability density of Y given X, 6 and o:
p(Y|X,0,0) = (2#02)_"/2 o~ 32 (V=X (Y-X0)

The maximum likelihood (ML) estimate of 8 is obtained by
taking the derivative of the log-likelihood, log p(Y'| X, 0, o).
The idea of maximum likelihood learning is to maximise the
likelihood of seeing some data Y by modifying the parame-
ters (0, 0).
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The ML estimate of 6 is:

*
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Proceeding in the same way, the ML estimate of o is:

*
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Lecture 7 - Ridge Regression

OBJECTIVE: Here we learn a cost function for linear
supervised learning that is more stable than the one in the
previous lecture. We also introduce the very important no-
tion of regularization.

All the answers so far are of the form
0= (xXx")'XTy

They require the inversion of X X”. This can lead to prob-
lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:
0= (XXT+01)"' XY

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

CH) = (Y — X0 (Y — X0) 4 6°070
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* Proof: *

That is, we are solving the following constrained opti-

misation problem:

min - {(Y - X0)"(Y — X0)}

It is useful to visualise the quadratic optimisation function 9: 6T <t

and the constraint region. Large values of § are penalised. We are shrinking 6 towards
zero. This can be used to carry out feature weighting.
An input z;, weighted by a small 0; will have less

influence on the ouptut y;.
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Spectral View of LS and Ridge Regression

Again, let X € R™*? be factored as

d
X =Uxv"T = Zumw?,
i=1

where we have assumed that the rank of X is d.

* The least squares prediction is:

d
YLS: E uiuz-TY
1=1

* Likewise, for ridge regression we have:

[\

2
g;

d
~ lox;
Yiidge = § L)Y
ge 92 1
L0745

The filter factor

o?

.:72
Ji o7 + 62

penalises small values of 2 (they go to zero at a faster rate).
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*

Also, by increasing 62 we are penalising the weights:

*
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Small eigenvectors tend to be wobbly. The Ridge filter fac-
tor f; gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).

The smoothness parameter 62 is often estimated by cross-

validation or Bayesian hierarchical methods.

Minimax and cross-validation

Cross-validation is a widely used technique for choosing 9.

Here’s an example:

*




