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Lecture 13 - Reproducing Kernel

Hilbert Spaces

OBJECTIVE: In this section, we derive one of the most

fundamental theorems in machine learning. The theorem es-

tablishes a formal connection between kernels and dot prod-

ucts of feature vectors in a (possibly infinite) feature space.

Symmetric Positive Definite Matrices

If A = AT (so A has to be square!) then A is said to be

symmetric. If A is symmetric, its eigenvalues are real.

A matrix A is symmetric positive (semi)definite (SPD) if

it is symmetric and

xTAx ≥ 0, ∀x �= 0.

If A is SPD, its eigenvalues are positive.
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Kernels as Measures of Similarity

Given the data {x1:n, y1:n}, where xi ∈ X is an object and

y its label, we measure the similarity between objects with

the following function (called kernel):

k : X × X �→ R

The matrix of kernels K for a given dataset is called the

Gram matrix. A kernel is SPD if the induced Gram ma-

trix for any dataset is SPD.

Kernels allow us to map objects to function spaces:

xi �→ k(·,xi)

�
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Example: Kernel PCA

We can project items in high-dimensions to low dimensions,

while preserving their topology. For example we can ensure

that if two objects are far apart in high dimensions, then

they will be far apart in low dimensions.

Initially, we have n data points in a d dimensional space

in the matrix X ∈ R
n×d. We map this data to the funtion

(feature) space ”matrix” Φ ∈ R
n×∞ and consider its SVD:

Φ = UΣVT . Of course, we can’t compute the SVD of a a

matrix with an infinite number of columns. However, if we

use the kernel trick: K = ΦΦT , then we have:

K = ΦΦT = UΣ2UT

So we can compute the eigenvalue decomposition of the n

by n Gram matrix and then the k pricipal components are:

UkΣk = KUkΣ
−1
k
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Theorem 6 A function k : X ×X �→ R, which is either

continuous or has finite domain, can be decomposed as a

dot product of features (in a Hilbert space):

k(xi,xj) = 〈φ(xi), φ(xj)〉 = φ(xi)φ(xj)
T

if and only if it is SPD.

Proof: First we prove the IF statement. That is, we begin

by proving that if k admits the decomposition k(xi,xj) =

〈φ(xi), φ(xj)〉, then k is SPD.

�
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Next we prove the ONLY IF state. That is, if k is SPD, then

it can be expressed as the dot product of feature mappings.

The proof consits of the following three parts:

1. Construct a vector (linear) space containing the images

of x under φ.

2. Define a dot product in this space and prove that it is

valid.

3. Show that the dot product satisfies k(xi,xj) = 〈φ(xi),φ(xj)〉.

� Step 1:
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� Step 2:
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� Step 3:
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Lecture 14 - Active Learning
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The top-left plot shows the initial data x, where only two

points have been labelled. By running the active learning

algorithm, the computer asks the user to enter the label

for a point that could minimize the Bayes risk the most

(the square in the top-right plot). The process is then

repeated in the bottom-left plot. The final classification

using only these four labels is perfect.
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One can use Bayesian decision theory to extend the semi-

supervised learning approach to the active learning domain.

In this approach, the class posterior probabilities p(yu
i |yl,x)

are approximated with the estimates 0 ≤ yu
i ≤ 1, yielding

the following expression for the posterior risk of the Bayes

classifier:

R(yu) =

M∑
i=1

min(yu
i , 1 − yu

i ).

� Proof:
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To decide which unlabelled point xj requires a label yj, we

first solve the linear system to obtain yu. Adding the new

label yj to the training set forces us to have to solve the lin-

ear system again. Fortunately, we can recompute the labels

efficiently using the matrix inversion lemma.

Let the field obtained by adding the point (xj, yj) be denoted

by y
+(xj ,yj)
u . Then, the posterior risk is:

R(y
+(xj ,yj)
u ) =

M−1∑
i=1

min
(
y

+(xj ,yj)

i , 1 − y
+(xj ,yj)

i

)
.

Of course, before querying the user, we do not know the label

yj, so we have to use the expected posterior risk:

E[R(y
+(xj ,yj)
u )] = (1 − yu

i )R(y
+(xj ,0)
u ) + yu

i R(y
+(xj ,1)
u )

After computing this expression, we pick the index j that

minimizes it and ask the user to enter a label for xj. The

pseudo-code follows.
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Input: L, U and W

WHILE more labels are required:

• Compute yu using (1).

• Find the best query j using the expected posterior

risk.

• Query point xj and receive answer yj.

• Add (xj, yj) to L and remove xj from U .
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The Learning Challenges

• Active Learning.

• Learning and Game Theory.

• Exciting new data.

• Function spaces and first order probabilistic inference.

• Solving complex probabilistic models in high dimensions.

• Combining all the bricks to build the cathedral.


