
CPSC-540: Machine Learning 154

Lecture 12 - Semi-Supervised Learn-

ing with Kernels

OBJECTIVE: In this lecture, we show how placing ker-

nels on data points allows us to project them to nonlin-

ear manifolds where it becomes easier to do semi-supervised

learning. The lecture is based on the paper of Zhu, Laf-

ferty and Ghahramani: “Semi-Supervised Learning Using

Gaussian Fields” and the paper of Smola and Kondor: ”Ker-

nels and Regularization on Graphs”.
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Semi-Supervised Learning

We are given N feature vectors x ∈ R
d as shown for d = 2

in Fig. 2. Some of the points have labels. In the figure, two

points have the labels yl = 1 and yl = 0. The rest of the

points have unknown labels yu. The goal is to compute the

unknown labels.
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Input data: Two points (×) and (o) have labels yl = 1 and

yl = 0 respectively. The remaining points are unlabelled

yu =?, but their topology is essential to the construction

of a good classifier.
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A human would classify all the points in the outer ring as 1

and the points in the inner circle as 0. We want an algorithm

that reproduces this perceptual grouping.

We do this by considering each point xi as a node in a fully

connected undirected graph. The edges of the graph have

weights corresponding to a similarity kernel. In our case,

the weight between points xi and xj is

wij = exp

(
−1

σ
‖xi − xj‖2

)
,

where ‖·‖ denotes the L2 norm. Hence, points that are close

together will have high similarity (high w), whereas points

that are far apart will have low similarity.
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It is sensible to minimize the following error function to com-

pute the unknown labels yu:

E(yu) =
1

2


 ∑

i∈L,j∈L

wij(y
l
i − yl

j)
2 + 2

∑
i∈U,j∈L

wij(y
u
i − yl

j)
2

+
∑

i∈U,j∈U

wij(y
u
i − yu

j )2


 ,

where L is the set of labelled points and U is the set of

unlabelled points. If two points are close then w will be

large. Hence, the only way to minimize the error function is

to make these two nearby points have the same label y.

Let us introduce the adjacency matrix W with entries wij

and the following block structure:

W =


Wll Wlu

Wul Wuu


 .

where Wuu denotes the entries wij with i, j ∈ U .
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Let D = diag(di) where di =
∑

j wij. That is,

D =




∑
j w1j 0 0 · · · 0

0
∑

j w2j 0 · · · 0

...

0 · · · 0 0
∑

j wNj




D is a diagonal matrix whose i-th diagonal entry is the sum

of the entries of row i of W. Let the vector yu contain all

the unknown labels yu and similarly let yl contain all the

labels yl. Then, the error function can be written in matrix

notation as follows:

E(yu)= yT
u (Duu−Wuu)yu− 2yT

l Wulyu+yT
l (Dll −Wll)yl,

E(yu) =
(
yl yu

) 
Dll − Wll −Wlu

−Wul Duu − Wuu





yl

yu



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Differentiating this error function and equating to zero, gives

us our solution in terms of a linear system of equations:

�

where 0 ≤ yu ≤ 1. A naive solution would cost O(M 3),

where M = |U | is the number of unlabelled points, since

|L| is significantly smaller than |U |. However, using fast n-

body methods in conjunction with the conjugate gradients

method for solving linear systems, it is possible to reduce

the computation to O(M log M), and even O(M) in some

cases.
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The solution that we have just obtained is actually not very

different from kernel ridge regression. Assume that the reg-

ulariser is set to zero; δ = 0. Then the equations for kernel

ridge regression are as follows:

α = K−1y and ŷ(x�) =

n∑
i=1

αik(x�,xi)

or in our current language:

yu = KulK
−1
ll yl

We have simply made the choice K = L−1 = (D − W)−1

� Proof sketch:
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If we have many classes, we can use the same equation with

voting

� Proof sketch:

Once we have labels for all N points in the training data,

a new point xk in the test set data can be classified using

the following classical kernel discriminant (Nadaraya-Watson

estimate):

yk =

∑N
i=1 wikyi∑N
i=1 wik

.
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EXAMPLE: Aibo is an interactive robot that learns to

recognize objects using semi-supervised input from a portable

computer.


