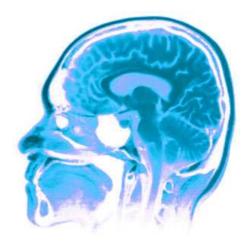


CPSC340



Bayesian learning

Nando de Freitas October, 2012 University of British Columbia

Maximum likelihood revision

Find
$$\Theta$$
 by maximizing $P(data | \Theta)$.
e.g. for a coin $P(data | \Theta) = \Theta^{m}(1 - \Theta)^{n-m}$
 $m = 24 1$'s $x_{1:n}$
 $n = 24 1$'s and O 's π slope
 $p(data | \Theta)$
 $p(data | \Theta)$
 $p(data | \Theta)$
 $f(data | \Theta)$
 $f(dat$

Maximum likelihood revision

$$\hat{\Theta}_{ML}$$
 is the theta that minimizes
 $P(x)(\theta) = Information(\Theta) - Information(\Theta)$
 T
 $f(\theta) = Information(\Theta) - Information(\Theta)$
 T
 $f(\theta) = T$
 $f(\theta) = T$

Outline of the lecture

This lecture introduces us to our second strategy for learning: **Bayesian learning**. The goal is for you to learn:

Definition Beta prior.

☐ How to use Bayes rule to go from **prior beliefs** and the **likelihood of the data** to **posterior beliefs**.

Bayesian learning procedure

Step 1: Given *n* data, $x_{1:n} = \{x_1, x_2, ..., x_n\}$, write down the expression for the likelihood:

$$p(x_{1:n} | \theta) = (-)^{m} (| - 0)^{n-m} (for a coin)$$

Step 2: Specify a prior: $p(\theta)$

$$P(\Theta|X_{i:n}) = \frac{1}{Const} P(X_{i:n}|\Theta) P(\Theta)$$

X

Step 3: Compute the posterior:

$$p(\theta | x_{1:n}) = \frac{p(x_{1:n} | \theta) p(\theta)}{p(x_{1:n})}$$

Notation:

$$p(\frac{\theta}{x_{1:n}}) \propto p(x_{1:n} | \theta) p(\theta) \leftarrow p(0) p(0) p(0) = 0$$

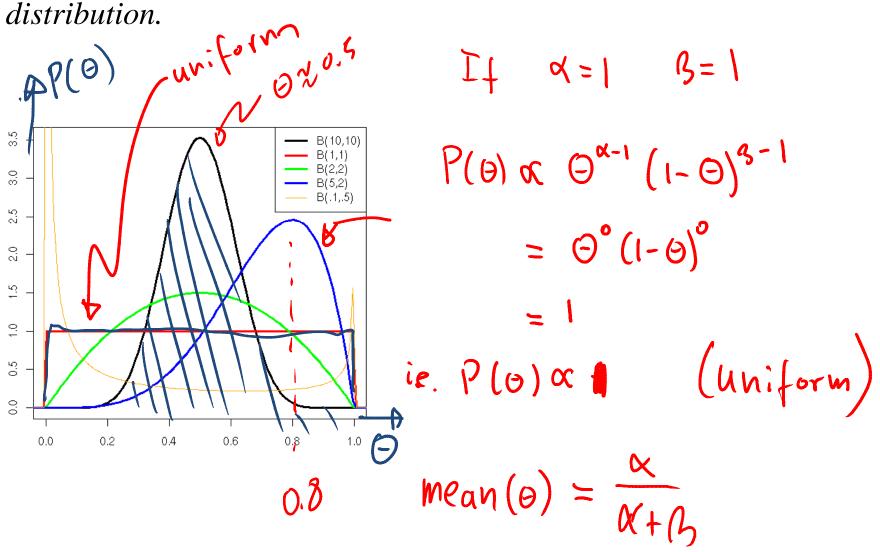
Bayesian learning procedure $P(A) = \overline{\sum}_{B} P(AB)$ **Posterior:** Compute the posterior: $P(A) = \int P(AB) dB$ $p(\theta | x_{1:n}) \propto p(x_{1:n} | \theta) p(\theta)$ $P(\Theta | x_{i:n}) = \frac{P(x_{i:n} | \Theta) P(\Theta)}{\left(P(x_{i:n} | \Theta) P(\Theta) d\Theta\right)}$ P(0|X1:n)d0=1 Marginal likelihood: $p(x_{1:n}) = \left(P(x_{1:n} | \theta) P(\theta) \right) d\theta$

Step 1: Write down the likelihood of the data (*i.i.d.* Bernoulli in our case):

Step 2: Specify a prior on θ . For this, we need to introduce the Beta distribution.

We know
$$\Theta$$
 is continuons and $O \leq \Theta \leq |$
 $P(\Theta)$?
 $P(\Theta) = \left[\frac{\prod(\alpha + \beta)}{\prod(\alpha) \prod(\beta)} \right] = O^{\alpha-1} (1 - \Theta)^{\beta-1} (\alpha, \beta) \text{ hyperparams}$
 $\prod(2) = \int_{0}^{\infty} e^{\chi} \chi^{2-1} d\chi$
 $\log(2) = \int_{1}^{2} \frac{1}{\chi} d\chi$
 $\int O^{\alpha-1} (1 - \Theta)^{\beta-1} d\Theta = \frac{\prod(\alpha) \prod(\beta)}{\prod(\alpha+\beta)} = O^{\alpha-1} (1 - \Theta)^{\alpha-1} d\Theta$

Step 2: Specify a prior on θ . For this, we need to introduce the Beta distribution.



Step 3: Compute the posterior:

 $p(\theta | x_{1.n}) \propto p(x_{1.n} | \theta) p(\theta) =$ $= \Theta^{m} (I-\Theta)^{n-m} (I-\Theta)^{\alpha-1} (I-\Theta)^{\alpha-1}$ $= \Theta^{m+\alpha-1} (1-\Theta)^{n-m+\beta-1}$ $= \Theta^{\alpha'-1} (1-\Theta)^{\alpha'-1} \qquad \alpha'=m+\alpha$ $\beta' = h - m + \beta$ $P(G|x_{1:n}) = \frac{1}{const} \Theta^{\alpha'-1} (1-\Theta)^{\beta'-1}$ $= \frac{\Gamma(x'+g')}{\Gamma(x')\Gamma(g')} \ominus^{x'-1} (1-G)^{3'-1}$

Example

Suppose we observe the data, $x_{1:6} = \{1, 1, 1, 1, 1, 1\}$, where each x_i comes from the same Bernoulli distribution (i.e. it is independent and identically distributed (*iid*)). What is a good guess of θ ? Qm = We can compute the posterior and use its mean as the estimate. $P(\Theta|X_{v:6}) \propto \Theta^{6+\alpha-1} (1-\Theta)^{0+\beta-1} \int 000000 d^{\prime}s$ $\hat{\Theta}_{g} = \mathbb{E}(\Theta|X_{1:6}) = \frac{6+\alpha}{6+\alpha+3} \int \theta_{g} \approx 1$ Using a prior Beta(1,0.01): $\frac{7}{10} = \frac{7}{10} = 2$ $3 = \frac{7}{10} = 2$ $3 = \frac{7}{10} = 2$ $3 = \frac{7}{100} = 2$

Next lecture

In the next lecture, we apply our learning strategies to Bayesian networks.