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Outline of the lecture

Thislectureisaquick revision of statistics. The goal isfor you to
|earn the following concepts:

1 Expectations.

4 Distributions.

1 Connection between probability and expectation.
 Bernoulli random variables and their properties.



Discrete random variables.

A binary random variable (r.v.) X isa mapping from the sample space 2
to a discrete space: E = {0,1}. In math:

X(w): Q—E

Where ware the measurable sets of Q.

Example

For a die, we may be interested in the events E={even,odd} . Here
2= {1.2,3456} and[X=even/if @ € {2,4,6}, or X=0dd if @ € {1,35}.




Probability distributions

Anr.v. may be described with a probability distribution

p(X;) = P(X=x;)
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The CDF

Ther.v. may also be described with a cumulative distribution function
F(X) =P(X <'X)
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EXpectation £=Co 1
Expectation isalinear operator defined as follows:

FOO=%xp0q) = 1P0=) + 0 P(ei)
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Let us introduce the indicator variable X=/,(w
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otherwise

Question: What is 7~ (/,(w)) equal to?
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Bernoulli: amodel for coins
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A Bernoulli r.v. X takesvaluesin {0,1} OLD'\? - b
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Where @ & (0, 1). \We can write this probability more succinctly as
follows: _
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Bernoulli expectation

What is the expectation/mean of a Bernoulli variable? )
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Bernoulli expectation

What is the variance of a Bernoulli variable?
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N Independent tosses

What is the distribution of N independent coin tosses? Ak



Next lecture

In the next lecture, we introduce information theory and the principle
of learning by maximizing likelihood.



