

CPSC340

Inference in Probabilistic Graphical Models

Nando de Freitas September, 2012 University of British Columbia

Outline of the lecture

This lecture is devoted to the problem of inference in probabilistic graphical models (aka Bayesian nets). The goal is for you to:

Practice marginalization and conditioning.
 I care how to apply dynamic programming to do inf

□ Learn how to apply dynamic programming to do inference.

Inference

Inference

Explaining away effect

Inference in DAGs

Let us use 0 to denote false and 1 to denote true.

1

$$P(s=1) = \sum_{c=0}^{l} \sum_{w=0}^{l} P(c, R, w, s=1)$$

$$= \sum_{c=0}^{l} \sum_{w=0}^{l} P(c)P(s=1|c)P(R|c)P(w|s=1, R)$$

Brute force (exponential) approach

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

Brute force (exponential) approach What is the marginal probability, P(S=1), that the sprinkler is on?

> PROD FOR R=0:1:1 For C = 0:1:1FOR WEOSIS PROD = PROD + P(c)P(RIC)P(SIC)P(WISSIR) END END END

Smart approach: variable elimination, aka dynamic programming, aka distributive law

Smart approach: variable elimination, *aka* dynamic programming, *aka* distributive law

$$\begin{aligned} \psi &= 0 \\ \varphi &= 0 \\ \varphi &= 0 \\ \varphi &= 0 \\ For \quad \psi &= 0; 1; 1 \\ \varphi &= \varphi_{R} + P(\psi | s = 1, R) \\ For \quad R = 0; 1; 1 \\ \psi &= \psi + P(R|c) \varphi_{R} \\ FOR \quad c = 0; 1; 1 \\ \varphi &= (2 + P(s = 1R)P(c)) \psi_{C} \quad (2 = 0, 3) \\ For \quad c = 0; 1; 1 \\ \varphi &= (2 + P(s = 1R)P(c)) \psi_{C} \quad (2 = 0, 3) \end{aligned}$$

Smart approach: variable elimination, *aka* dynamic programming, *aka* distributive law

We won't implement the general code in this course. To do this one needs to learn about the **junction tree** data structure. This structure, once created, enables us to conduct any query on the graph very efficiently.

These exact algorithms work well for small graphs and for graphs that are **trees** or close to trees (have low tree-width). For large densely connected graphs we require the use of algorithms beyond the scope of this course. One of those algorithms is called **Gibbs sampling**.

In the next class, we will address a tree of great interest: a chain of nodes. For discrete models this model is known by the name **HMM**.

Inference in DAGs

What is the **posterior probability**, P(S=1/W=1), that the sprinkler is on given that the grass is wet?

$$P(s=1|w=1) = \frac{P(s=1,w=1)}{P(w=1)}$$

$$P(w=1) = \sum_{s} \sum_{c \in R} P(s,w=1,c,R)$$

$$P(S=1,W=1) = \sum_{c \in R} \sum_{c \in R} P(s=1,w=1,c,R)$$

/

Inference in DAGs

What is the **posterior probability**, P(S=1/W=1,R=1), that the sprinkler is on given that the grass is wet and it is raining?

$$P(s=1|w=1,k=1) = P(s=1|(w=1,k=1))$$

= $\frac{P(s=1,w=1,k=1)}{P(w=1,k=1)}$

Next lecture

In the next lecture, we will learn to do inference on a tree-structured graphical model, known as hidden Markov model (HMM)