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Outline of the lecture

This lecture builds on the concepts of conditioning and marginalization
to introduce Bayes rule. The goal is for you to:

� Learn how Bayes rule is derive.
� Learn to apply Bayes rule to practical examples.
� Practice marginalization and conditioning.Practice marginalization and conditioning.



Problem 1: Diagnoses

� The doctor has bad news and good news. 

� The bad news is that you tested positive for a 
serious disease, and that the test is 99% accurate 
(i.e., the probability of testing positive given that 
you have the disease is 0.99, as is the probability of you have the disease is 0.99, as is the probability of 
testing negative given that you don’t have the 
disease). 

� The good news is that this is a rare disease, 
striking only 1 in 10,000 people. 

� What are the chances that you actually have the 
disease? 



Problem 2: Monty Hall
On a game show, a contestant is told the rules as follows:

� There are three doors, labeled 1, 2, 3. A single big prize has been hidden behind 
one of them. The other two doors have goats. You get to select one door. 

� Initially your chosen door will not be opened. Instead, the host will open one of 
the other two doors, and he will do so in such a way as not to reveal the prize. 

� At this point, you will be given a fresh choice of door: you can either stick with � At this point, you will be given a fresh choice of door: you can either stick with 
your first choice, or you can switch to the other closed door. All the doors will 
then be opened and you will receive whatever is behind your final choice.

Imagine that the contestant chooses door 1 first; then the host opens door 3, 
revealing a goat behind the door. Should the contestant 

(a) stick with door 1, 
(b) switch to door 2,  
(c) does it make no difference?



Problem 2: Monty Hall



Problem 3: Speech synthesis and recognition

1. Can computers produce a voice signal given some typed words?

2. Can computers produce words when they hear a voice signal?2. Can computers produce words when they hear a voice signal?

3. Why?



Bayes rule
Bayes rule enables us to reverse probabilities:

P(B|A)P(A)
P(B)

P(A|B) = 



Learning and Bayesian inference 
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Problem 1: Diagnoses

The test is 99% accurate:  P(T=1|D=1) = 0.99 and  P(T=0|D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000:  P(D=1) = 0.0001



Problem 2: Monty Hall
(i) H=i denote the Hypothesis that the prize is behind door i. A priori 
all 3 doors are equally likely to have the prize:

P(H=1) = P(H=2) = P(H=3) = 1/3

Let’s think. If the prize is truly behind door 1, the host is indifferent and 
will choose doors 2 or 3 with equal probability. If the prize is behind 

(ii) Contestant chooses door 1.

will choose doors 2 or 3 with equal probability. If the prize is behind 
door 2 (or 3), host chooses 3 (or 2).

P(D=2|H=1) = ½, P(D=3|H=1) = ½
P(D=2|H=2) = 0, P(D=3|H=2) = 1
P(D=2|H=3) = 1, P(D=3|H=3) = 0

(iii) The host opens door 3 (D=3), revealing a goat behind the door. That 
is, the observation is  D=3. Now is the prize behind door 2 or 1?



Problem 2: Monty Hall
P(H=1) = P(H=2) = P(H=3) = 1/3

P(D=2|H=1) = ½, P(D=3|H=1) = ½
P(D=2|H=2) = 0, P(D=3|H=2) = 1
P(D=2|H=3) = 1, P(D=3|H=3) = 0



Problem 2: Monty Hall



Problem 3: Speech synthesis and recognition

cat cab

Suppose she hears: Is it cat or cab?

She imagines the sounds each word produces and compares the sounds

Take Home Message: Learning takes place to ensure that 
our observations match our hallucinations



Speech recognition 

P(words| sound)   P(sound| words) P(words)
Final beliefs Likelihood of data Prior language model

eg mixture of Gaussians eg unigrams

Hidden Markov Model (HMM)

α

“Recognize speech” “Wreck a nice beach”



People as Bayesian reasoners



Utilitarian view: We need models to make the right decisions under 
uncertainty. Inference and decision making are intertwined.

Learned posterior Loss/Reward model u(x,a)

Bayes and decision theory

P(x=healthy|data) = 0.9

P(x=cancer|data) = 0.1

We choose the action that maximizes the expected utility:

P(x=cancer|data) = 0.1

EU(a=no treatment) = 

EU(a=treatment) = 

EU(a) =          u(x,a) P(x|data)

x
Σ



Next lecture

In the next class, we will introduce probabilistic graphical models.

These will enable us to attack problems with many variables.


