

CPSC340

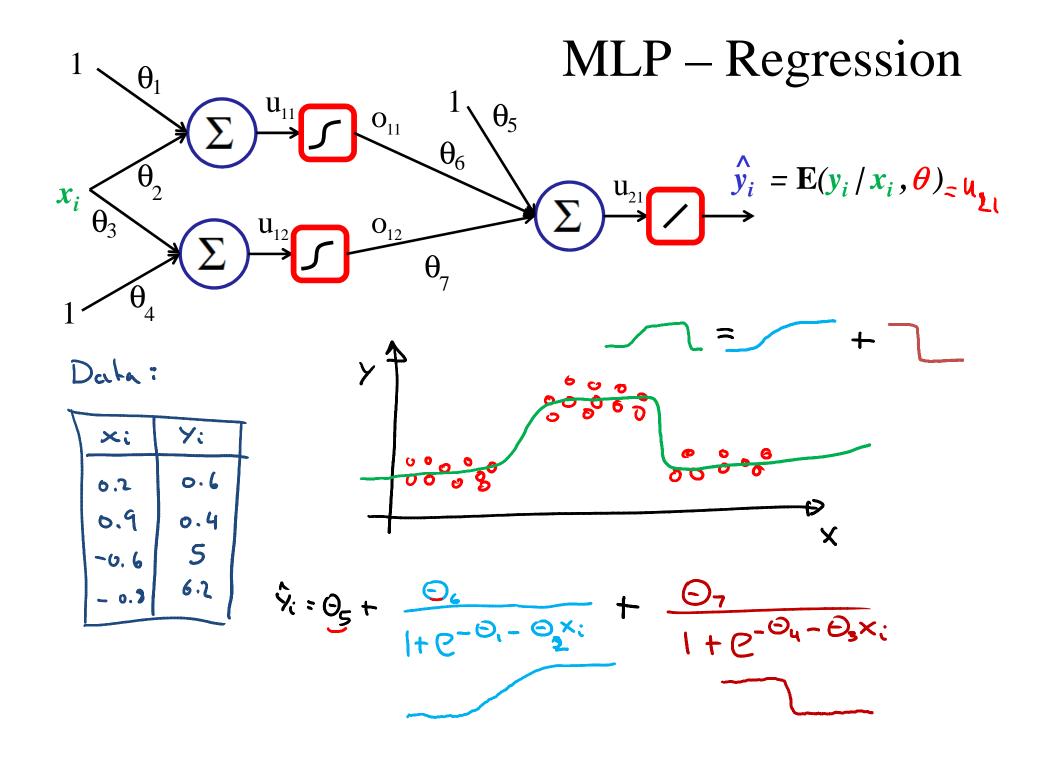


State-of-the-art Neural Networks

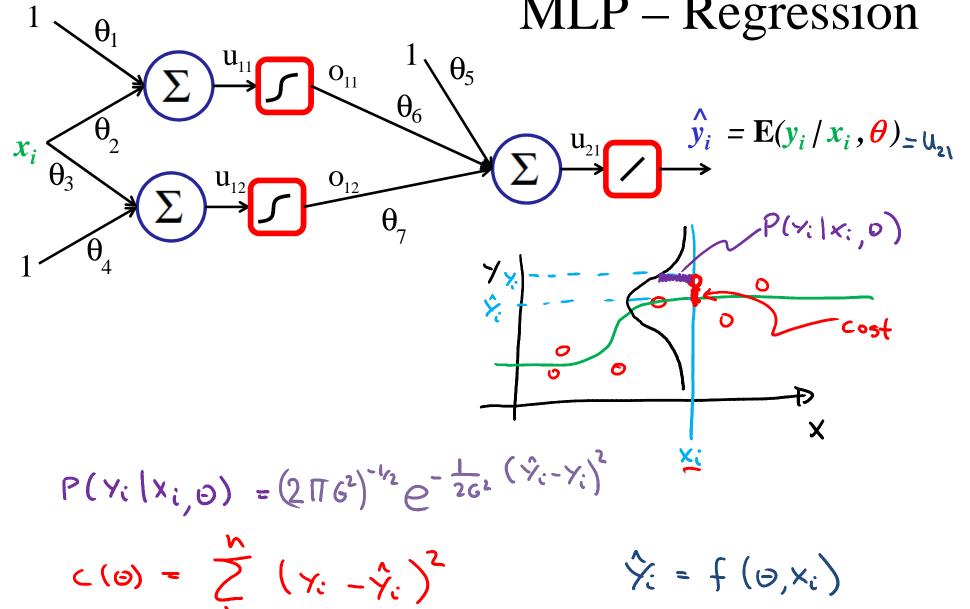
Outline of the lecture

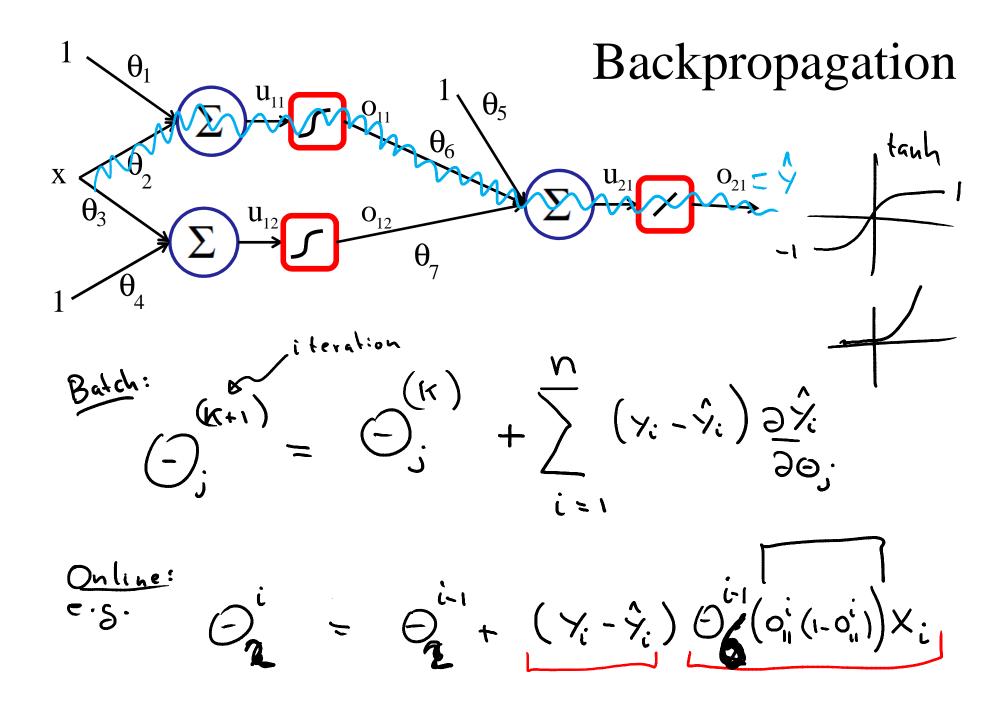
This lecture provides an overview of two state-of-the-art neural networks: The google net and dropout nets. It discusses:

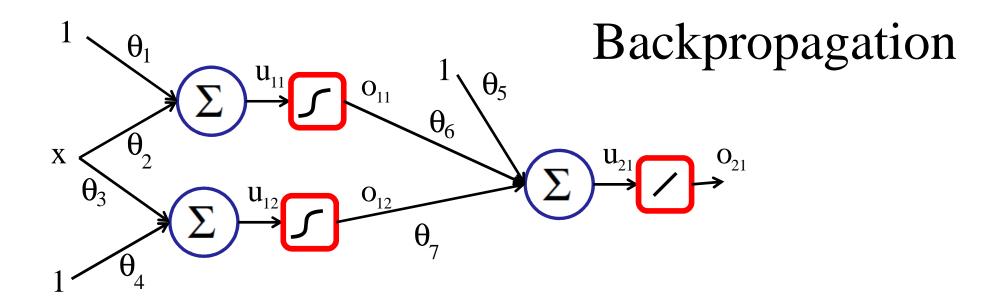
- ☐ Unsupervised learning with NNs (autoencoders)
- ☐ Pooling
- ☐ Local contrast normalization
- ☐ Randomization for regularization



MLP – Regression







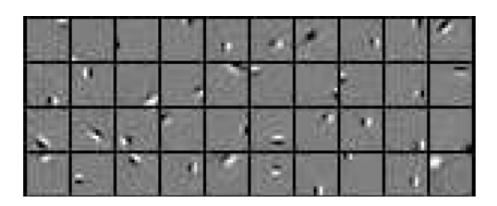
How do we deal with unsupervised data?

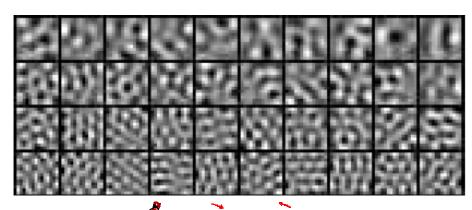
In life, we get little supervision

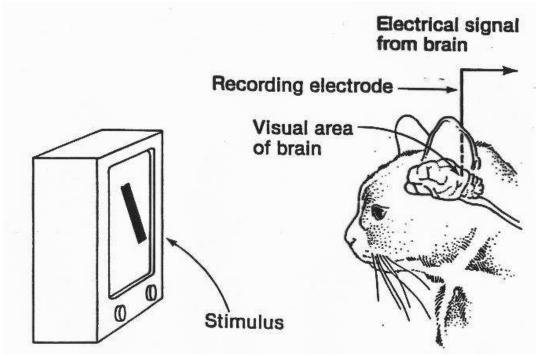
e.g., no one teaches us how to see

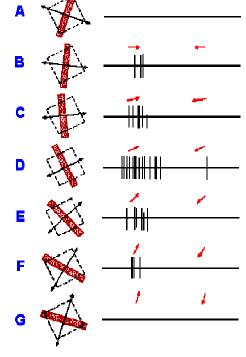
$$\mathbf{B}^*, \mathbf{C}^* = \underset{\mathbf{B}, \mathbf{C}}{\operatorname{arg \, min}} ||\mathbf{X} - \mathbf{B}\mathbf{C}||_2^2 + \lambda \, ||\mathbf{C}||_1$$

$$s.t. \quad ||\mathbf{b}_j||_2^2 = 1, \, \forall j.$$

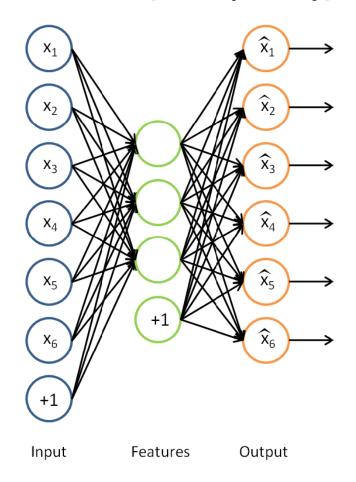


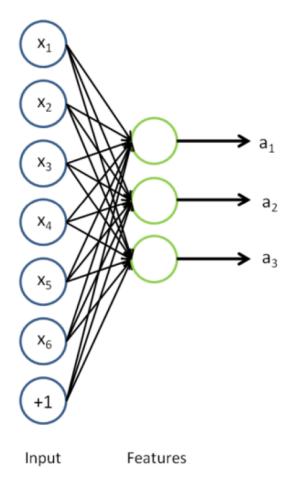






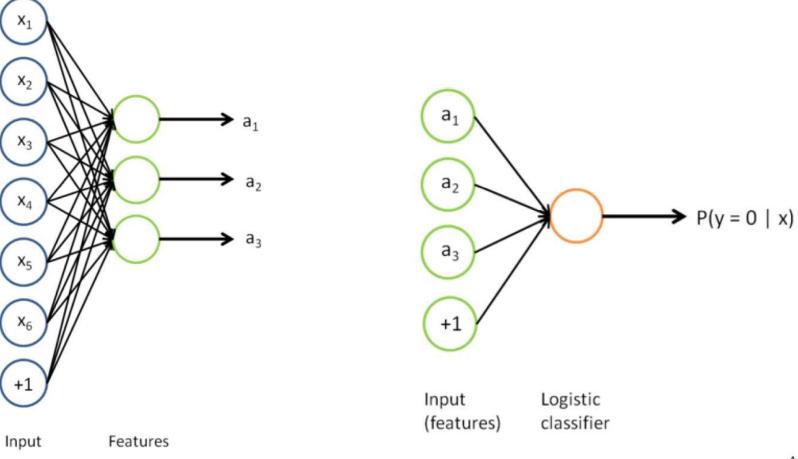
Autoencoders (and sparsity)





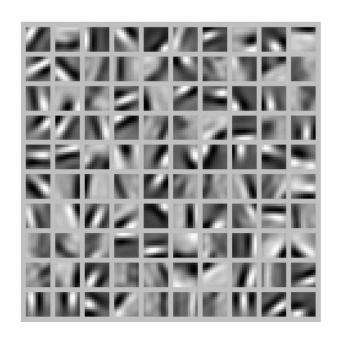
Andrew Ng

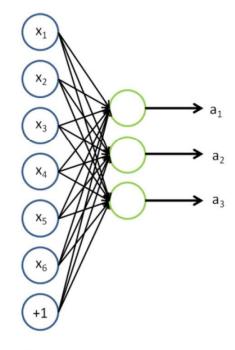
Unsupervised Feature Learning/Self-taught learning



Andrew Ng

Sparse autoencoders





Input

Features

Andrew Ng

minimize
$$\frac{\lambda}{m} \sum_{i=1}^{m} \|W^T W x^{(i)} - x^{(i)}\|_2^2 + \sum_{i=1}^{m} \sum_{j=1}^{k} g(W_j x^{(i)})$$

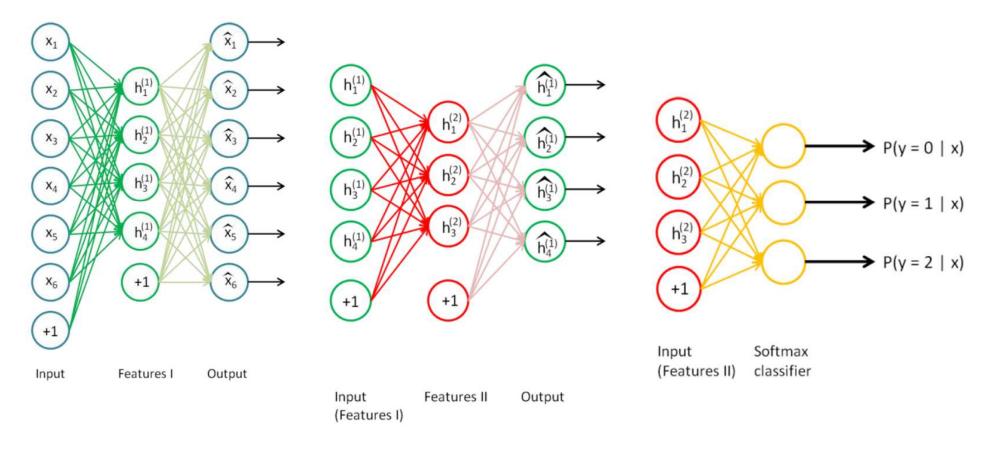
$$\underset{W,b,c}{\text{minimize}} \frac{\lambda}{m} \sum_{i=1}^{m} \|\sigma(W^T \sigma(W x^{(i)} + b) + c) - x^{(i)}\|_2^2 + \sum_{i=1}^{m} \sum_{j=1}^{k} g(W_j x^{(i)})$$

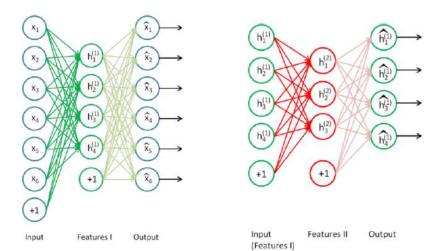
e.g., smooth L_1 penalty: $g(.) := \log(\cosh(.))$

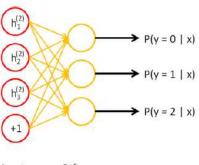
More layers:

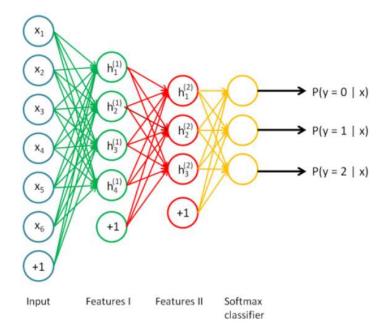
deep learning

Unsupervised pre-training + Fine-tuning







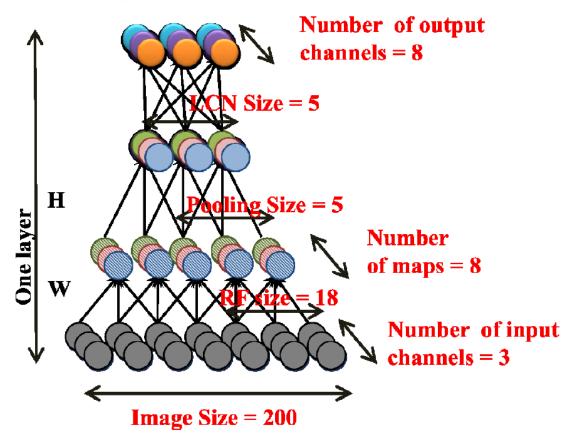


Google autoencoder

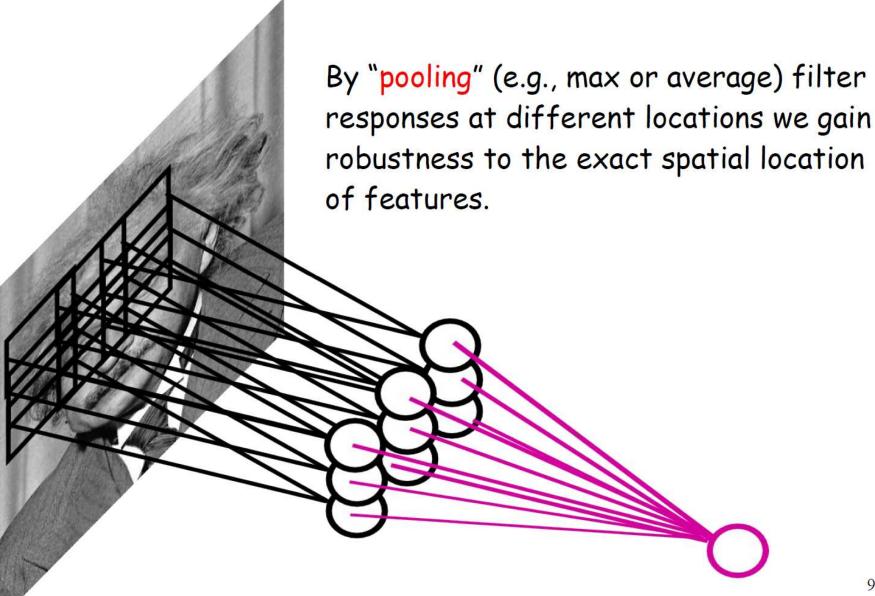
$$\underset{W_1, W_2}{\text{minimize}} \quad \sum_{i=1}^{m} \left(\|W_2 W_1^T x^{(i)} - x^{(i)}\|_2^2 + \right)$$

$$\lambda \sum_{j=1}^k \sqrt{\epsilon + H_j(W_1^T x^{(i)})^2} \bigg).$$

Input to another layer above (image with 8 channels)



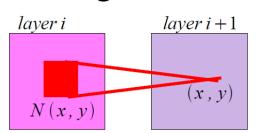
POOLING



POOLING & LCN

Over the years, some new modules have proven to be very effective when plugged into conv-nets:

- L2 Pooling

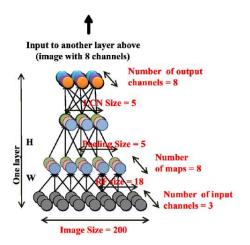


$$h_{i+1,x,y} = \sqrt{\sum_{(j,k)\in N(x,y)} h_{i,j,k}^2}$$

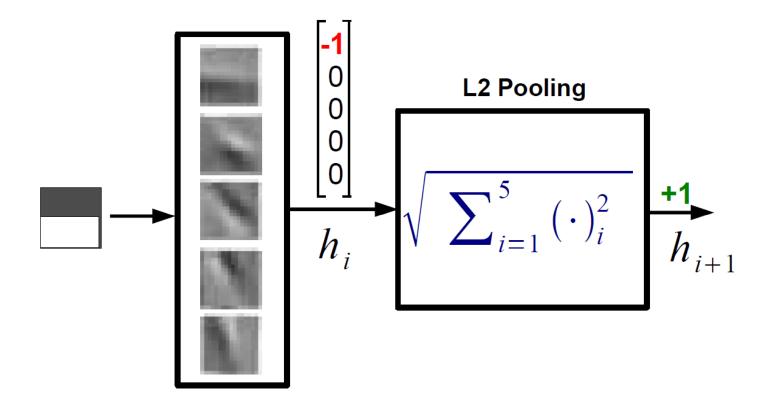
- Local Contrast Normalization

$$h_{i+1,x,y} = \frac{h_{i,x,y} - m_{i,N(x,y)}}{\sigma_{i,N(x,y)}}$$

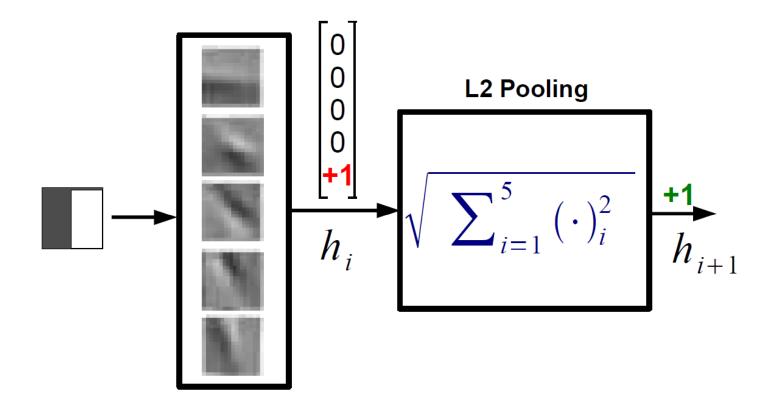
Jarrett et al. "What is the best multi-stage architecture for object 12 recognition?" ICCV 2009 Ranzato



L2 POOLING



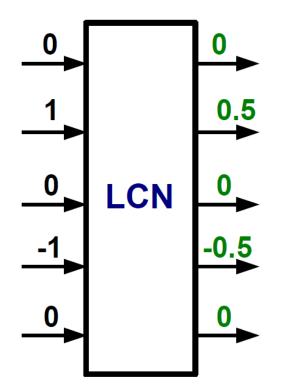
L2 POOLING



L2 Pooling helps learning representations more robust to local distortions!

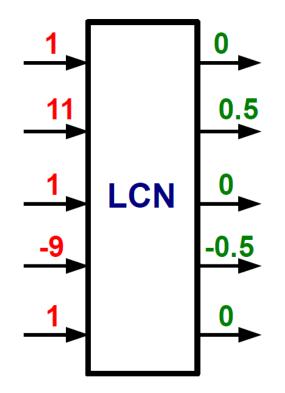
LOCAL CONTRAST NORMALIZATION

$$h_{i+1,x,y} = \frac{h_{i,x,y} - m_{i,N(x,y)}}{\sigma_{i,N(x,y)}}$$



LOCAL CONTRAST NORMALIZATION

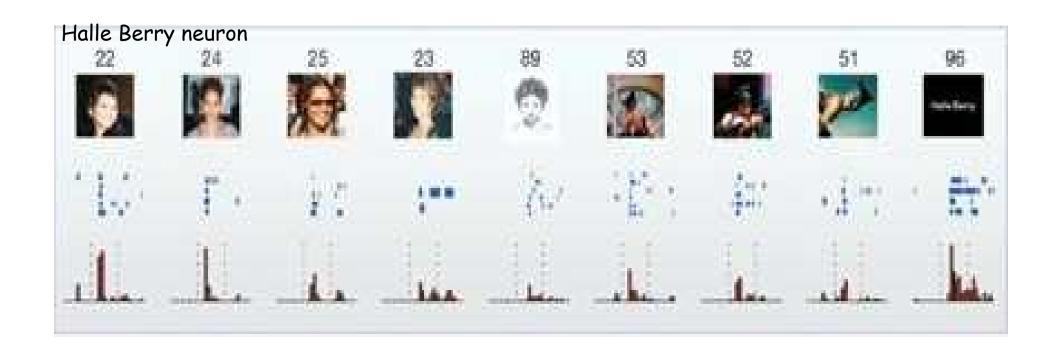
$$h_{i+1,x,y} = \frac{h_{i,x,y} - m_{i,N(x,y)}}{\sigma_{i,N(x,y)}}$$



L2 Pooling & Local Contrast Normalization help learning more invariant representations!

from Quiroga et al. "Invariant visual representation by single neurons in the human brain" Nature 2005

"Here we report on a remarkable subset of MTL neurons that are selectively activated by strikingly different pictures of given individuals, landmarks or objects and in some cases even by letter strings with their names."



Unsupervised Learning With 1B Parameters

DATA: 10M youtube (unlabeled) frames of size 200x200.

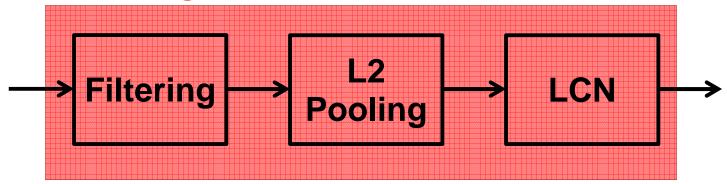
Unsupervised Learning With 1B Parameters

Deep Net:

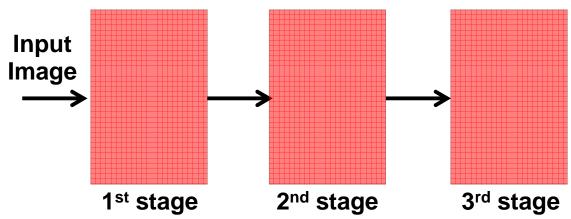
- 3 stages
- each stage consists of local filtering, L2 pooling, LCN
 - 18x18 filters
 - 8 filters at each location
 - L2 pooling and LCN over 5x5 neighborhoods
- training jointly the three layers by:
 - reconstructing the input of each layer
 - sparsity on the code

Unsupervised Learning With 1B Parameters

One stage (zoom)



Whole system

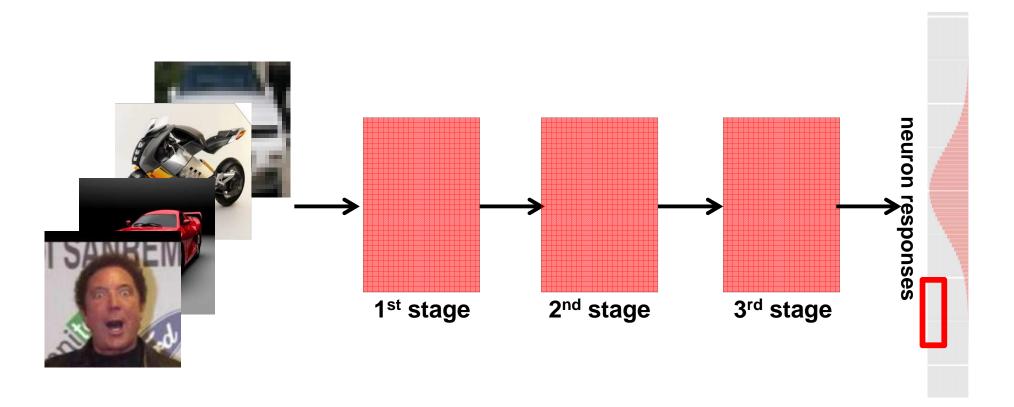


Validating Unsupervised Learning

The network has seen lots of objects during training, but without any label.

- Q.: how can we validate unsupervised learning?
- Q.: Did the network form any high-level representation?
 E.g., does it have any neuron responding for faces?
- build validation set with 50% faces, 50% random images
- study properties of neurons

Validating Unsupervised Learning



Face / No face

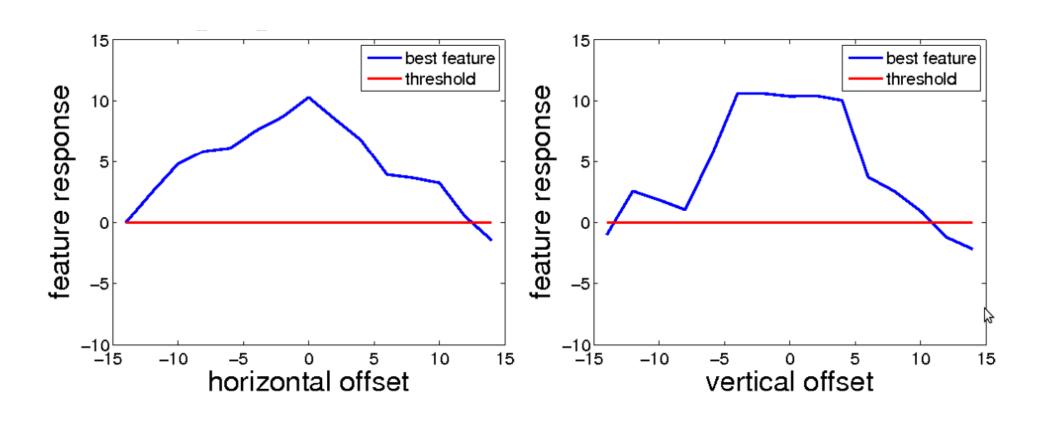


Top Images For Best Face Neuron

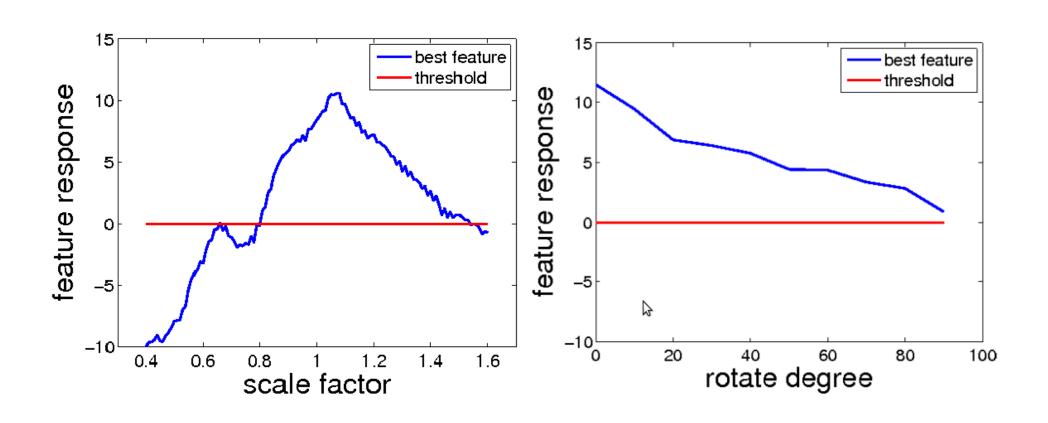
Best Input For Face Neuron

 $x^* = \arg\min_{x} f(x; W, H)$, subject to $||x||_2 = 1$

Invariance Properties



Invariance Properties



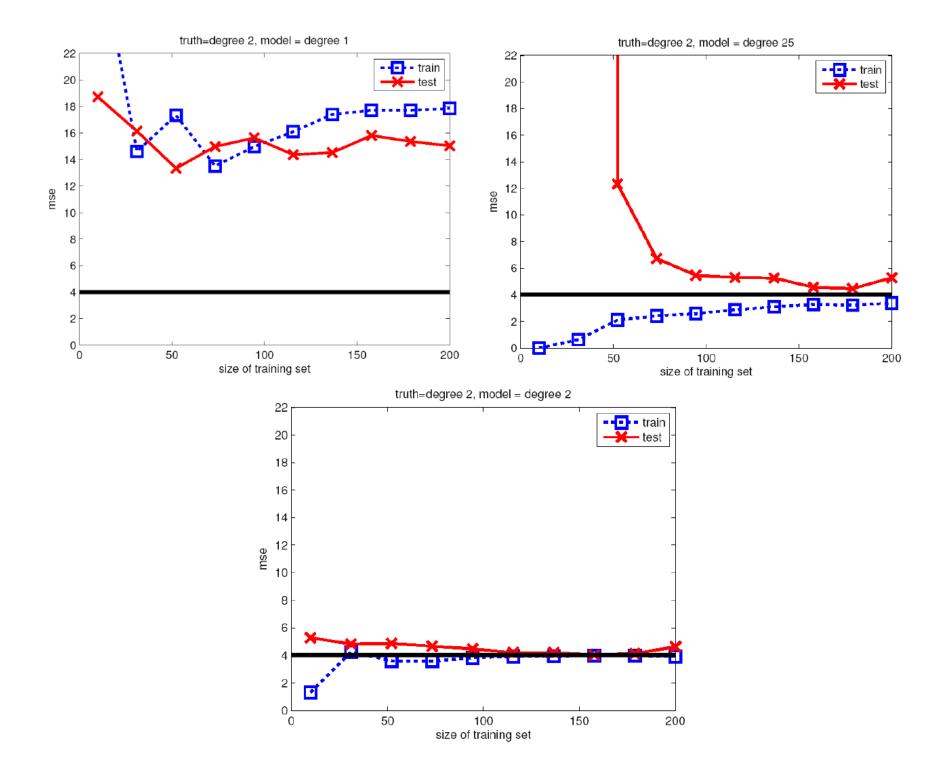
Cat Neuron

Top Images for Cat Neuron

Object Recognition on ImageNet

IMAGENET v.2011 (16M images, 20K categories)

METHOD	ACCURACY %
Weston & Bengio 2011	9.3
Linear Classifier on deep features	13.1
Deep Net (from random)	13.6
Deep Net (from unsup.)	15.8



Visual Object Classes Challenge 2012 (VOC2012)

- Classification: For 20 classes, predict presence/absence of an example of that class in the test image.
- **Detection**: Predict the bounding box and label of each object from the 20 target classes in the test image.

Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

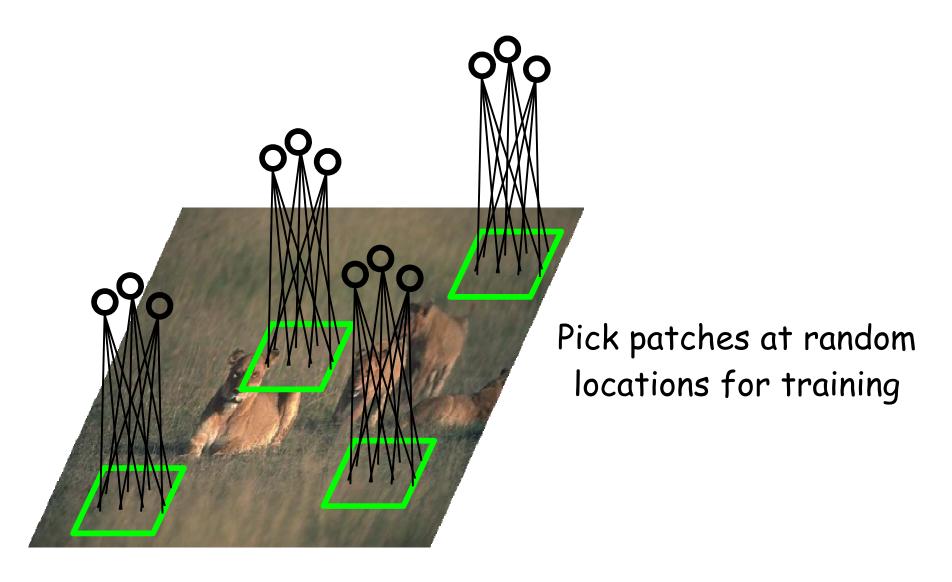
Task 1 (classification)

Team name	Error (5 guesses)	Description
SuperVision	0.15315	Using extra training data from ImageNet Fall 2011 release
SuperVision	0.16422	Using only supplied training data
ISI	0.26172	Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.
ISI	0.26602	Weighted sum of scores from classifiers using each FV.
ISI	0.26646	Naive sum of scores from classifiers using each FV.
ISI	0.26952	Naive sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.
OXFORD_VGG	0.26979	Mixed selection from High-Level SVM scores and Baseline Scores, decision is performed by looking at the validation performance
XRCE/INRIA	0.27058	
OXFORD_VGG	0.27079	High-Level SVM over Fine Level Classification score, DPM score and Baseline Classification scores (Fisher Vectors over Dense SIFT and Color Statistics)
OXFORD_VGG	0.27302	Baseline: SVM trained on Fisher Vectors over Dense SIFT and Color Statistics
University of Amsterdam XRCE/INRIA	0.29576 0.33419	See text above
LEAR-XRCE	0.34464	Trained on ILSVRC'12 - using a mixture of NCM classifiers
LEAR-XRCE	0.36184	Trained on ILSVRC'12 - using NCM
LEAR-XRCE	0.38006	Trained on ILSVRC'10 - using a mixture of NCM classifiers
LEAR-XRCE	0.41048	Trained on ILSVRC'10 - using NCM

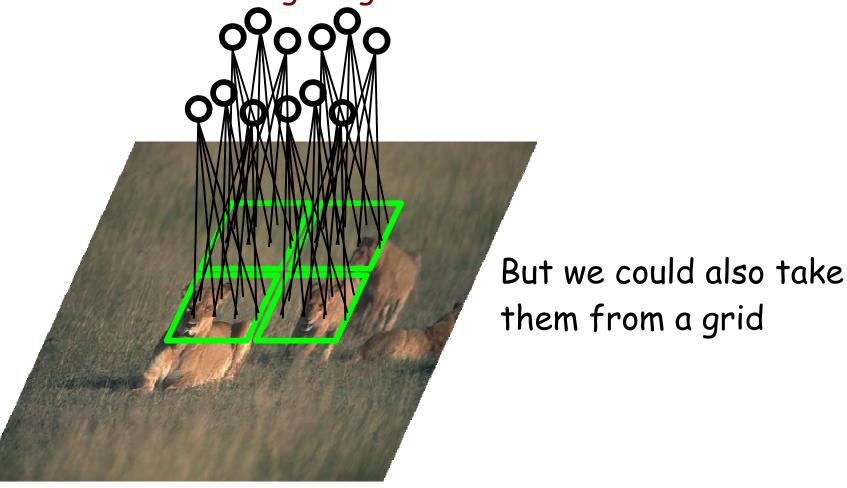
Task 2 (localization)

Team name	Error (5 guesses)	Description
SuperVision	0.335463	Using extra training data for classification from ImageNet Fall 2011 release
SuperVision	0.341905	Using only supplied training data
OXFORD_VGG	0.500342	Re-ranked DPM detection over Mixed selection from High-Level SVM scores and Baseline Scores, decision is performed by looking at the validation performance
OXFORD_VGG	0.50139	Re-ranked DPM detection over High-Level SVM Scores
OXFORD_VGG	0.522189	Re-ranked DPM detection over High-Level SVM Scores - First bbox selection heuristic
OXFORD_VGG	0.529482	DPM detection over baseline classification scores
ISI	0.536474	We use the cascade object detection with deformable part models, restricting the sizes of bounding boxes.
ISI	0.536546	We use the cascade object detection with deformable part models, restricting the sizes of bounding boxes.

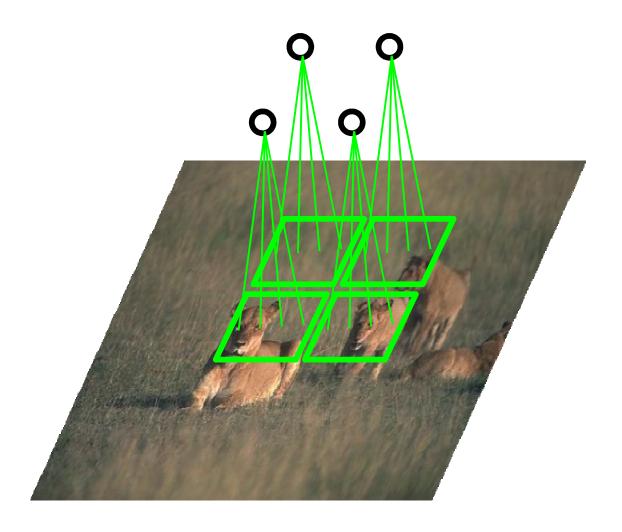
Training on Small Image Patches



This is not a good way to extend the model to big images: block artifacts

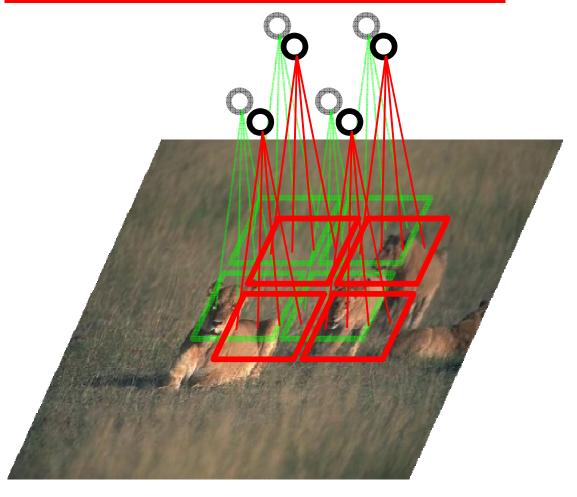


IDEA: have one subset of filters applied to these locations,



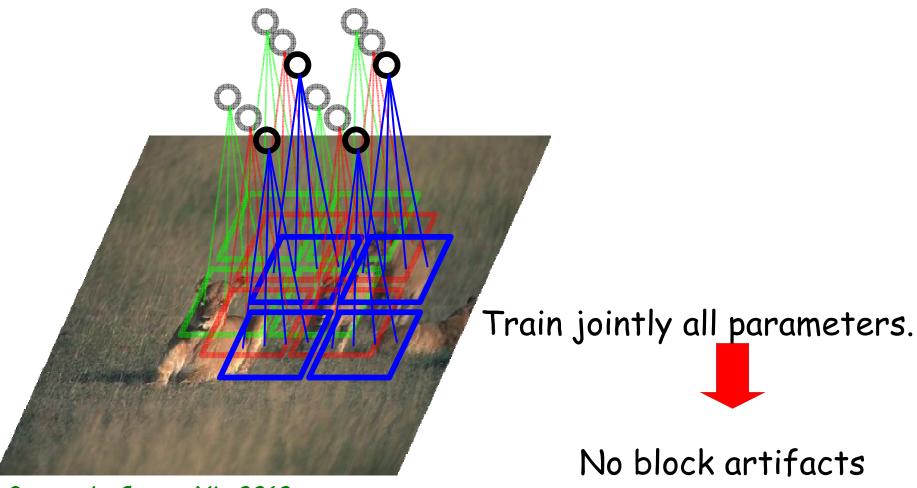
IDEA: have one subset of filters applied to these locations,

another subset to these locations



IDEA: have one subset of filters applied to these locations,

another subset to these locations, etc.



Gregor LeCun arXiv 2010 Ranzato, Mnih, Hinton NIPS 2010 No block artifacts
Reduced redundancy

Averaging many models

- To win a machine learning competition (e.g. Netflix) you need to use many different types of model and then combine them to make predictions at test time.
- Decision trees are not very powerful models, but they are easy to fit to data and very fast at test time.
 - Averaging many decision trees works really well.
 Its called random forests. Kinect uses this.
 - We make the individual trees different by giving them different training sets. That's called bagging

Two ways to average models

 Mixture: We can combine models by taking the arithmetic means of their output probabilities:

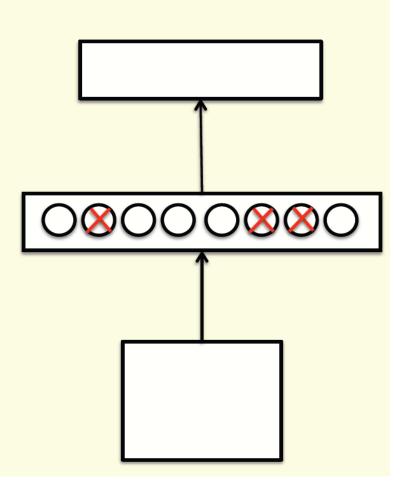
Model A: .3 .2 .5 Model B: _.1 .8 .1 Combined .2 .5 .3

 Product: We can combine models by taking the geometric means of their output probabilities:

> Model A: .3 .2 .5 Model B: .1 .8 .1 Combined $\sqrt{.03} \sqrt{.16} \sqrt{.05}$ /sum

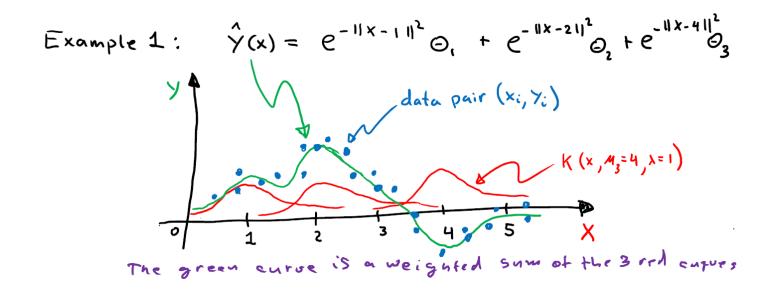
Dropout: An efficient way to average many large neural nets.

- Consider a neural net with one hidden layer.
- Each time we present a training example, we randomly omit each hidden unit with probability 0.5.
- So we are randomly sampling from 2^h different architectures.
 - All architectures share weights.



Dropout as a form of model averaging

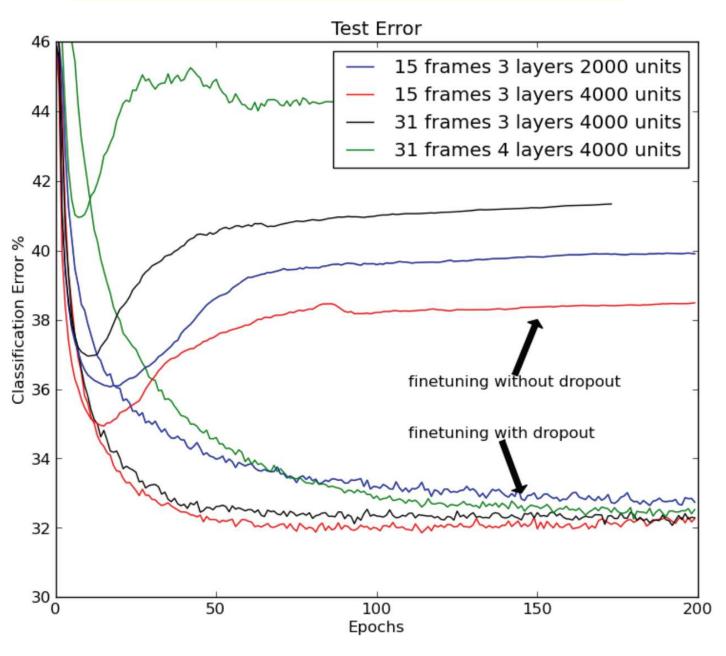
- We sample from 2^h models. So only a few of the models ever get trained, and they only get one training example.
 - This is as extreme as bagging can get.
- The sharing of the weights means that every model is very strongly regularized.
 - It's a much better regularizer than L2 or L1 penalties that pull the weights towards zero.



But what do we do at test time?

- We could sample many different architectures and take the geometric mean of their output distributions.
- It better to use all of the hidden units, but to halve their outgoing weights.
 - This exactly computes the geometric mean of the predictions of all 2^h models.

Experiments on TIMIT



Next lecture

The next lecture introduces random forests.