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Outline of the lecture

This lecture describes the construction of binary classifiers using a 
technique called Logistic Regression. The objective is for you to 
learn:

� How to apply logistic regression to discriminatebetween two 
classes.classes.
� How to formulate the logistic regression likelihood.
� How to derive the gradient and Hessian of logistic regression 
on your own.
� How to incorporate the gradient vector and Hessian matrix into 
Newton’s optimization algorithm so as to come up with an 
algorithm for logistic regression, which we’ll call IRLS.



McCulloch-Pitts model of a neuron



Sigmoid function∑

sigm(η) refers to the sigmoid function, also known as the logistic or
logit function:

sigm(η) =
1

1 + e−η
=

eη

eη + 1



Linear separating hyper-plane

[Greg Shakhnarovich]



Logistic regression
The logistic regression model specifies the probability of a binary output
yi ∈ {0, 1} given the input xi as follows:

p(y|X, θ) =

n∏

i=1

Ber(yi|sigm(xiθ))

=
n∏[

1

1 + e−xiθ

]yi [
1−

1

1 + e−xiθ

]1−yi∏

i=1

[

1 + e−xiθ

] [
−

1 + e−xiθ

]

where xiθ = θ0 +
∑d

j=1 θjxij



Gradient and Hessian of binary logistic regression

The gradient and Hessian of the negative loglikelihood, J(θ) = − log p(y|X, θ),
are given by:

g(w) =
d

dθ
J(θ) =

n∑

i=1

xTi (πi − yi) = X
T (π − y)

H =
d

dθ
g(θ)T =

∑
πi(1− πi)xix

T
i = XTdiag(πi(1− πi))X

dθ

∑

i

− −

where πi = sigm(xiθ)

One can show that H is positive definite; hence the NLL is convex and
has a unique global minimum.

To find this minimum, we turn to batch optimization.



Iteratively reweighted least squares (IRLS)
For binary logistic regression, recall that the gradient and Hessian of the
negative log-likelihood are given by

gk = XT (πk − y)

Hk = XTSkX

Sk := diag(π1k(1− π1k), . . . , πnk(1− πnk))

πik = sigm(xiθk)ik i k

The Newton update at iteration k + 1 for this model is as follows (using
ηk = 1, since the Hessian is exact):

θk+1 = θk −H
−1gk

= θk + (XTSkX)−1XT (y − πk)

= (XTSkX)−1
[
(XTSkX)θk +X

T (y − πk)
]

= (XTSkX)−1XT [SkXθk + y − πk]



Iteratively reweighted least squares (IRLS)

from __future__ importdivision
importnumpy as np

def logistic(a):    
return 1.0 / (1 + np.exp(-a))

def irls(X, y):    
theta = np.zeros(X.shape[1])    theta = np.zeros(X.shape[1])    
theta_ = np.inf    
while max(abs(theta-theta_)) > 1e-6:        

a = np.dot(X, theta)        
pi = logistic(a)        
SX = X * (pi - pi*pi).reshape(-1,1)        
XSX = np.dot(X.T, SX)        
SXtheta = np.dot(SX, theta)        
theta_ = theta        
theta = np.linalg.solve(XSX, np.dot(X.T, SXtheta + y - pi))    

returntheta



Iteratively reweighted least squares (IRLS)

if __name__ == "__main__":
# load the data.    
X = np.loadtxt('spambase.data', delimiter=',', skiprows=1)    

# split X/y and add a constant column to X.    
y = X[:,-1]    
X = X[:,:-1]    
X = np.c_[np.ones(X.shape[0]), X]    X = np.c_[np.ones(X.shape[0]), X]    
Xtrain, Xtest = X[0:4000], X[4000:]    
ytrain, ytest = y[0:4000], y[4000:]    

theta = irls(Xtrain, ytrain)    

train_rate = sum((logistic(np.dot(Xtrain, theta)) > .5) != ytrain) / ytrain.size    
test_rate  = sum((logistic(np.dot(Xtest,  theta)) > .5) != ytest)  / ytest.size    

print "Training data misclassification rate: %.4f" % train_rate    
print "Test data misclassification rate:     %.4f" % test_rate



Next lecture

In the next lecture, we consider a generalization of logistic regression, 
with many logistic units, called multi-layer perceptron (MLP). MLPs 
are the most commonly used type of artificial neural networks.


