
CPSC540

Nando de Freitas
October, 2011
University of British Columbia

Logistic Regression and Neuron Models

Outline of the lecture

This lecture describes the construction of binary classifiers using a
technique called Logistic Regression. The objective is for you to
learn:

� How to apply logistic regression to discriminatebetween two
classes.classes.
� How to formulate the logistic regression likelihood.
� How to derive the gradient and Hessian of logistic regression
on your own.
� How to incorporate the gradient vector and Hessian matrix into
Newton’s optimization algorithm so as to come up with an
algorithm for logistic regression, which we’ll call IRLS.

McCulloch-Pitts model of a neuron

Sigmoid function∑

sigm(η) refers to the sigmoid function, also known as the logistic or
logit function:

sigm(η) =
1

1 + e−η
=

eη

eη + 1

Linear separating hyper-plane

[Greg Shakhnarovich]

Logistic regression
The logistic regression model specifies the probability of a binary output
yi ∈ {0, 1} given the input xi as follows:

p(y|X, θ) =

n∏

i=1

Ber(yi|sigm(xiθ))

=
n∏[

1

1 + e−xiθ

]yi [
1−

1

1 + e−xiθ

]1−yi∏

i=1

[

1 + e−xiθ

] [
−

1 + e−xiθ

]

where xiθ = θ0 +
∑d

j=1 θjxij

Gradient and Hessian of binary logistic regression

The gradient and Hessian of the negative loglikelihood, J(θ) = − log p(y|X, θ),
are given by:

g(w) =
d

dθ
J(θ) =

n∑

i=1

xTi (πi − yi) = X
T (π − y)

H =
d

dθ
g(θ)T =

∑
πi(1− πi)xix

T
i = XTdiag(πi(1− πi))X

dθ

∑

i

− −

where πi = sigm(xiθ)

One can show that H is positive definite; hence the NLL is convex and
has a unique global minimum.

To find this minimum, we turn to batch optimization.

Iteratively reweighted least squares (IRLS)
For binary logistic regression, recall that the gradient and Hessian of the
negative log-likelihood are given by

gk = XT (πk − y)

Hk = XTSkX

Sk := diag(π1k(1− π1k), . . . , πnk(1− πnk))

πik = sigm(xiθk)ik i k

The Newton update at iteration k + 1 for this model is as follows (using
ηk = 1, since the Hessian is exact):

θk+1 = θk −H
−1gk

= θk + (XTSkX)−1XT (y − πk)

= (XTSkX)−1
[
(XTSkX)θk +X

T (y − πk)
]

= (XTSkX)−1XT [SkXθk + y − πk]

Iteratively reweighted least squares (IRLS)

from __future__ importdivision
importnumpy as np

def logistic(a):
return 1.0 / (1 + np.exp(-a))

def irls(X, y):
theta = np.zeros(X.shape[1]) theta = np.zeros(X.shape[1])
theta_ = np.inf
while max(abs(theta-theta_)) > 1e-6:

a = np.dot(X, theta)
pi = logistic(a)
SX = X * (pi - pi*pi).reshape(-1,1)
XSX = np.dot(X.T, SX)
SXtheta = np.dot(SX, theta)
theta_ = theta
theta = np.linalg.solve(XSX, np.dot(X.T, SXtheta + y - pi))

returntheta

Iteratively reweighted least squares (IRLS)

if __name__ == "__main__":
load the data.
X = np.loadtxt('spambase.data', delimiter=',', skiprows=1)

split X/y and add a constant column to X.
y = X[:,-1]
X = X[:,:-1]
X = np.c_[np.ones(X.shape[0]), X] X = np.c_[np.ones(X.shape[0]), X]
Xtrain, Xtest = X[0:4000], X[4000:]
ytrain, ytest = y[0:4000], y[4000:]

theta = irls(Xtrain, ytrain)

train_rate = sum((logistic(np.dot(Xtrain, theta)) > .5) != ytrain) / ytrain.size
test_rate = sum((logistic(np.dot(Xtest, theta)) > .5) != ytest) / ytest.size

print "Training data misclassification rate: %.4f" % train_rate
print "Test data misclassification rate: %.4f" % test_rate

Next lecture

In the next lecture, we consider a generalization of logistic regression,
with many logistic units, called multi-layer perceptron (MLP). MLPs
are the most commonly used type of artificial neural networks.

