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Outline of the lecture

This lecture is intended at revising probabilistic concepts that play an 
important role in the design of machine learning and data mining 
algorithms. It is expected that you will learn and master the following 
three topics:

1. Frequentistand axiomatic definition of probability.1. Frequentistand axiomatic definition of probability.
2. Conditioning.
3. Marginalization.



Probability as frequency

Consider the following questions:

1. What is the probability that when I flip a coin it is “heads”?

2. Why?

3. What is the probability that the Lion’s gate bridge will 
collapse before the term is over?

Message: The frequentistview is very useful, but it seems that we also use domain 
knowledge to come up with probabilities. Moreover, it seems that probability can be 
subjective(different people have different probabilities for the same event). 



Probability as measure
Imagine we are throwing darts at a wall of size 1x1 and that all darts are guaranteed to 
fall within this 1x1 wall. What is the probability that a dart will hit the shaded area?

Message: Probability is a measureof certainty of an eventtaking place. i.e. in the 
example above we were measuring the chances of hitting the shaded area.



Probability

Probability is the formal study of the laws of chance. Probability 
allows us to manage uncertainty.

Thesample space is the set of all outcomes. For example, for a die we 
have 6 outcomes:

Probability allows us to measure many events. The events are subsets 
of the sample space. For example, for a die we may consider the 
following events:

We assign probabilities to these events:



The axioms
The following two laws are the key axioms of probability:

We can visualize all these 
sets with Venn Diagrams



Or and And operations

Given two events, A and B, that are not disjoint, we have:

P(A or B) = P(A) + P(B) – P(A and B)



Conditional probability
Assuming (given that) B has been observed (i.e. there is no uncertainty 
about B), the following tells us the probability that A will take place: 

P(A given B) = P(A and B) / P(B)

That is, in the frequentist interpretation, we calculate the ratio of the 
number of times both A and B occurred and divide it by the number of 
times B occurred.times B occurred.

For short we write:P(A|B) = P(AB)/P(B); or P(AB)=P(A|B)P(B), 
where P(A|B) is the conditional probability, P(AB) is the joint, and 
P(B) is the marginal.

If we have more events, we use the chain rule:

P(ABC) = P(A|BC) P(B|C) P(C)



Conditional probability

Can we write the joint probability, P(AB), in more than one way in 
terms of conditional and marginal probabilities? 



Independence

We know that:
P(AB) = P(A|B)P(B)

But what happens if A does not depend on B? That is, the value of B
does not affect the chances of A taking place. How does the above 
expression simplify?

How does the expression below simplify?

P(ABCD) = 



Conditional probability example
Assume we have a dark box with 3 red balls and 1 blue ball. That is, 
we have the set {r,r,r,b}. What is the probability of drawing 2 red balls 
in the first 2 tries? 

P(B1 = r, B2 = r) =



Marginalization

Proof sketch: 



Conditional probability example
What is the probability that the 2nd ball drawn from the set {r,r,r,b}
will be red? 

Using marginalization, P(B2 = r) = 



Matrix notation
Assume that X can be 0 or 1. We use the math notation: X {0,1}.

Let P(X1=0) = ¾ and P(X1=1)= ¼. Assume too that P(X2=1|X1=0) = 1/3, 
P(X2=1|X1=1) = 0. Then, P(X2=0|X1=0) =       ,  P(X2=0|X1=1) =    

We can obtain an expression for P(X2) easily using matrix notation: 



Matrix notation
We have:

P(X1) P(X2|X1) = P(X2)

For short, we write this using vectors and a stochastic matrix:

Imagine we kept on multiplying by G.

Σ

Imagine we kept on multiplying by G.

Claim: For a very large number k, after k iterations, the value of ππππ
stabilizes.

That is, ππππk is an eigenvector of G with eigenvalue 1.



Google’s website search algorithm
The previous observation is key to understand how Google’s pageRank 
algorithm works.


