

CPSC340

Dirichlet and Categorical variables: Naïve Bayes classifier

Nando de Freitas November, 2012 University of British Columbia

Outline of the lecture

This lecture introduces the Dirichlet and categorical distributions, as well as the Naïve Bayes classifier. The goal is for you to:

Learn categorical distributions.

Derive the Dirichlet posterior from the Dirichlet prior and categorical likelihood.

□ Understand how a classifier for text is set up.

□ Understand the Naïve Bayes classifier for text classification.

Revision: Beta-Bernoulli

Suppose $X_i \sim \text{Ber}(\theta)$, so $X_i \in \{0,1\}$. We know that the likelihood has the form $p(\mathcal{D}|\theta) = \theta^{N_1}(1-\theta)^{N_0}$

where we have $N_1 = \sum_{i=1}^{N} \mathbb{I}(x_i = 1)$ heads and $N_0 = \sum_{i=1}^{N} \mathbb{I}(x_i = 0)$ tails.

The **beta prior** has pdf:
$$0 \le \Theta \le 1$$

$$Beta(\theta | \alpha_1, \alpha_2) = \frac{1}{B(\alpha_1, \alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}$$

Revision: Beta-Bernoulli

If we multiply the Bernoulli likelihood by the beta prior we get

$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta)p(\theta) \qquad \qquad \text{Borowith} \\ \propto [\theta^{N_1}(1-\theta)^{N_2}][\theta^{\alpha_1-1}(1-\theta)^{\alpha_2-1}] \\ = \theta^{N_1+\alpha_1-1}(1-\theta)^{N_2+\alpha_2-1} \\ \propto \text{Beta}(\theta|N_1+\alpha_1, N_2+\alpha_2)$$

We see that the posterior has the same functional form (beta) as the prior (beta), since it is conjugate.

Categorical distribution

The multivariate version of the Bernoulli distribution is the Categorical distribution (an instance of the multinomial distribution). K-1

We are given **n** data points, $x_{1:n} = \{x_1, x_2, ..., x_n\}$. Each point x_i indicates one of K values. For example if then the possible vectors are (100), (010) and (001). $X_{i} = \begin{cases} 1 & 100 \\ 2 & 010 \\ 0 & 0 & 0 \end{cases}$ K=3

The likelihoo

P(x;=1|0)=0, P(x;=1|0)=0,

$$p(x_i | \theta) = Cat(x_i | \theta) = \prod_{j=1}^{K} \Theta_j^{\mathbb{I}}(x_{ij} = 1)$$

$$p(x_i | \theta) = Cat(x_i | \theta) = \prod_{j=1}^{K} \Theta_j^{\mathbb{I}}(x_{ij} = 1)$$

$$p(x_{1:n} | \theta) = \prod_{i=1}^{N} \prod_{j=1}^{K} \Theta_j^{\mathbb{I}}(x_{ij} = 1)$$

$$\Theta_i^{\mathbb{I}}(x_{ij} = 1)$$

$$\Theta_i^{\mathbb{I}}(x_{ij} = 1)$$

$$\Theta_i^{\mathbb{I}}(x_{ij} = 1)$$

Dirichlet distribution

The conjugate prior is the **Dirichlet distribution** which is the natural generalization of the beta distribution to multiple dimensions.

The pdf is defined as follows:

$$\operatorname{Dir}(\boldsymbol{ heta}|\boldsymbol{lpha}) \ := \ \overbrace{B(\boldsymbol{lpha})}^{K} \ \prod_{k=1}^{K} heta_{k}^{lpha_{k}-1}$$

 $\alpha = \Theta^{\alpha_{i}-1} \left(\left(- \Theta \right)^{\alpha_{i}-1} \right)$ $= \Theta^{\alpha_{i}-1} \Theta^{\alpha_{i}-2}$

defined on the **probability simplex**, i.e., the set of vectors such that $0 \leq \theta_k \leq 1$ and $\sum_{k=1}^{K} \theta_k = 1$.

In addition, $B(\alpha_1, \ldots, \alpha_K)$ is the natural generalization of the beta function to K variables: $\Theta_{1}^{\alpha_{1},1} \Theta_{2}^{\alpha_{1},1} \Theta_{3}^{\alpha_{1},1} \Theta_{4}^{\alpha_{1},1} \Theta_{4}^{\alpha_{1},1} \Theta_{5}^{\alpha_{1},1} \Theta_{5}^{\alpha_{1}$

$$B(\boldsymbol{\alpha}) := \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\alpha_0)}$$

where $\alpha_0 := \sum_{k=1}^{K} \alpha_k$.

Dirichlet-categorical model $P(G|X_{in}) \propto P(X_{in}|\theta) P(\theta)$ / j=1 j=1____ $N_{j}^{i} = \sum_{j=1}^{n} \mathbb{I}\left(X_{ij}^{i}=1\right)$ $= \prod_{j=1}^{n} \Theta_{j}^{N_{j}} \prod_{j=1}^{k} \Theta_{j}^{N_{j-1}}$ For the die úci $= \prod_{j=1}^{K} \Theta_{j}^{(N_{j}+\alpha_{j})-1}$ $\alpha_{j} = N_{j} + \alpha_{j}$ Posterior is Dirichlet II No is the # times you saw a 5.

Text classification example

Tweets about: obama

<u>lillien1984</u>: RT @<u>Barack</u>**Obama**: President **Obama**: "You know that I know what real change looks like because you've seen me fight for it." <u>Posted 22 seconds ago</u>

<u>a_girl_irl</u>: Romney endorsed by cool H'wood celebs: Kid Rock, Chuck Woolery, hot chick from Clueless, that's literally it, everyone else likes **Obama** <u>Posted 22 seconds ago</u>

<u>AmericanWoman8</u>: RT @<u>RBReich</u>: If **Obama** wins, will radical right see it as a repudiation and become more reasonable, or as a provocation and grow even more extreme?

y is used to indicate C classes. E.g., the classes could be positive, negative and neutral. That is, C=3.

The input x in this example is a vector of dzeros with ones indicating which words occur in the tweet. ut ut gat ut org <math>d diduced is judged ut org d diduced is judged ut of d diduced ut of d diduced is judged ut of d diduced ut of d diduced is judged ut of d diduced ut o

Posted 22 seconds ago

Naïve Bayes classifier $\gamma \in \{1, 2, ..., C\}$

We are interested in the posterior distribution of y given the model parameters θ and π and the inputs (features) x:

Naïve Bayes classifier

Assume the features are conditionally independent given the class label. That is,

Naïve Bayes classifier with binary features x

$$P(y|x, \theta, \pi) \propto p(y|\pi) p(x|y, \theta)$$

$$\chi_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$p(y|\pi, \theta, x) \propto \prod_{i=1}^{n} \prod_{c=1}^{C} \left(\pi_{c}^{\mathbb{I}_{c}(y_{i})} \prod_{j=1}^{d} \theta_{jc}^{\mathbb{I}_{c}(y_{i})\mathbb{I}_{1}(x_{ij})} (1 - \theta_{jc})^{\mathbb{I}_{c}(y_{i})\mathbb{I}_{0}(x_{ij})} \right)$$

$$P(y|\overline{n}) = \prod_{i=1}^{n} \prod_{c=1}^{C} \prod_{i=1}^{C} (\gamma_{i}) \qquad P(y_{i} = c \mid \pi) = \prod_{c} \prod_{i=1}^{C} (\gamma_{i}) \prod$$

 $\Theta_{jc} = P(X_{ij} = 1 | Y_i = C, \Theta)$

n is the number of data points $N_c = \sum_{i=1}^{n} II(Y_i = c)$ is the number of data of class c. $N_{ic} = \sum_{i=1}^{n} II_c(Y_i) II_i(X_{ij})$ #times $X_{ij} = 1$ given we are in class c.

$$\hat{\pi}_{c} = \frac{N_{c}}{n}$$
$$\hat{\Theta}_{jc} = \frac{N_{jc}}{N_{c}}$$

Predicting the class of new data

Given a new data point (say tweet)

$$z^*$$
, the class prediction is:
 $training data$
 $P(y=c|x^*, D) \propto \prod_c \prod_{j=1}^d \widehat{O}_{jc} \prod_{j=1}^{l} (1-\widehat{O}_{jc})^{l}$

Do this for all classes and then normalize so that $\sum_{c'} P(Y=c' \mid X^*, D) = 1$

Naïve Bayes classifier with binary features

1
$$N_c = 0, N_{jc} = 0;$$

2 for $i = 1 : \eta$ do
3 $c = y_i // \text{ Class label of } i$ 'th example
4 $N_c := N_c + 1;$
5 $for j = 1 : d$ ' do
6 $if x_{ij} = 1$ then
7 $\left\lfloor \begin{array}{c} if x_{ij} = 1 \text{ then} \\ N_{jc} := N_{jc} + 1 \end{array} \right\rfloor$
8 $\hat{\pi}_c = \frac{N_c}{N}, \hat{\theta}_{jc} = \frac{N_{jc}}{N}$

Log-sum-exp trick

$$\log p(y = c | \mathbf{x}) = b_c - \log \left[\sum_{c'=1}^{C} e^{b_{c'}} \right]$$
$$b_c := \log p(\mathbf{x} | y = c) + \log p(y = c)$$

$$\log[\sum_{c'} e^{b_{c'}}] = \log\sum_{c'} p(y = c', \mathbf{x}) = \log p(\mathbf{x}) \quad \log Sum \exp function$$
$$\log\sum_{c} e^{b_{c}} = \log\left[(\sum_{c} e^{b_{c}-B})e^{B}\right] = \left[\log(\sum_{c} e^{b_{c}-B})\right] + B \quad \text{where } B = \max_{c} b_{c}.$$

For example,

$$\log(e^{-120} + e^{-121}) = \log\left(e^{-120}(e^0 + e^{-1})\right) = \log(e^0 + e^{-1}) - 120$$

NBC prediction with log-sum-exp trick

1 for
$$i = 1$$
: $\hat{\mathbf{n}}$ do
2 $\int \mathbf{for} \ c = 1 : C \ \mathbf{do}$
3 $\int L_{ic} = \log \hat{\pi}_c;$
4 $\int \mathbf{for} \ j = 1 : \mathbf{d} \ \mathbf{do}$
5 $\int \mathbf{if} \ x_{ij} = 1 \ \mathbf{then} \ L_{ic} := L_{ic} + \log \hat{\theta}_{jc} \ \mathbf{else} \ L_{ic} := L_{ic} + \log(1 - \hat{\theta}_{jc})$
6 $p_{ic} = \exp(L_{ic} - \log\operatorname{sumexp}(L_{i,:}));$
7 $\hat{y}_i = \operatorname{argmax}_c p_{ic};$

$$2^{3} 2^{4} = 2^{3+4} \qquad \text{MLE} \qquad \prod_{i} \prod_{c} \prod_{c} (v_{i}) = \prod_{c} \sum_{c} \sum_{c} (v_{i}) \\ p(y|x, \theta, \pi) \propto p(y|\pi) p(x|y, \theta) \qquad \prod_{i=1}^{n} \prod_{c=1}^{C} \left(\pi_{c}^{\mathbb{I}_{c}(y_{i})} \prod_{j=1}^{d} \theta_{jc}^{\mathbb{I}_{c}(y_{i})\mathbb{I}_{1}(x_{ij})} (1 - \theta_{jc})^{\mathbb{I}_{c}(y_{i})\mathbb{I}_{0}(x_{ij})} \right) \\ = \prod_{c=1}^{C} \prod_{c} N_{c} \qquad \prod_{j=1}^{d} \Theta_{jc}^{N_{jc}} (1 - \Theta_{jc})^{\mathbb{I}_{c}(y_{i})\mathbb{I}_{0}(x_{ij})} \\ \int (\Theta_{i}\pi) = \left(\sum_{c=1}^{C} N_{c} (\Theta_{j}\pi) + \left(\sum_{c=1}^{L} \sum_{j=1}^{N_{c}} N_{jc} (\Theta_{j}^{-1} + [V_{c}, V_{jc}]) \log(1 - \Theta_{jc}) \right) \right) \\ = \left(\sum_{c=1}^{C} N_{c} (\Theta_{j}\pi) + \left(\sum_{c=1}^{L} \sum_{j=1}^{N_{c}} N_{jc} (\Theta_{j}^{-1} + [V_{c}, V_{jc}]) \log(1 - \Theta_{jc}) \right) \right) \\ = \left(\sum_{c=1}^{C} N_{c} (\Theta_{j}^{-1} + [V_{c}^{-1} + [V_{$$

MLE for π

MLE for θ

$$f(\Theta) = \sum_{j=1}^{d} \sum_{c=1}^{C} N_{jc} \log \Theta_{jc} + (N_c - N_{jc}) \log (1 - \Theta_{jc})$$

$$\frac{\partial l(\Theta)}{\partial \Theta_{jc}} = \frac{N_{jc}}{\Theta_{jc}} \frac{1}{\Phi_{jc}} + \frac{(N_c - N_{jc})}{1 - \Theta_{jc}} \frac{-1}{1 - \Theta_{jc}}$$

$$= \frac{\left[N_{jc}(1 - \Theta_{jc}) + (N_{jc} - N_c)\Theta_{jc}\right]}{\Theta_{jc}(1 - \Theta_{jc})}$$
Equating to Zero:

$$\frac{N_{ic} - N_{ic}\Theta_{jc} + N_{jc}\Theta_{jc} - N_c\Theta_{jc}}{\Theta_{jc}} = 0$$

$$\frac{\Theta_{jc}}{\Theta_{jc}} = \frac{N_{ic}}{N_e}$$

Bayesian analysis

Likelihood: $p(\mathbf{y}|\boldsymbol{\pi}, \boldsymbol{\theta}, \mathbf{x}) \propto \prod_{i=1}^{\mathbf{n}} \prod_{c=1}^{\mathbf{C}} \left(\pi_{c}^{\mathbb{I}_{c}(y_{i})} \prod_{j=1}^{\mathbf{d}} \theta_{jc}^{\mathbb{I}_{c}(y_{i})\mathbb{I}_{1}(x_{ij})} (1 - \theta_{jc})^{\mathbb{I}_{c}(y_{i})\mathbb{I}_{0}(x_{ij})} \right)$ $= \prod_{c=1}^{C} \left(\prod_{c} \frac{d}{\prod_{c}} \Theta_{jc} \frac{d}{\prod_{c}} \Theta_{jc} \left(1 - \Theta_{jc} \right)^{N_{c} - N_{jc}} \right)$ **Prior:** $P(\pi) \propto \prod_{c} \pi_{c}^{\alpha_{c}-1}$ Dirichlet $P(\Theta_{jc}) = \Theta_{jc}^{3} (f \Theta_{jc})^{3} dx (beta priors)$ $P(\overline{\Pi}_{i} \Theta) = \prod_{i=1}^{C} (\overline{\Pi}_{c}^{\alpha_{c-1}} \prod_{i=1}^{A} \Theta_{jc}^{3} (1 - \Theta_{ic})^{3})^{1}$

Next lecture

In the next lecture, we learn about another very popular classifier: logistic regression. This classifier will be a building block for neural networks.