

CPSC340

Sparse regularization and feature selection

Nando de Freitas October, 2012 University of British Columbia

Outline of the lecture

This lecture introduces one of the most popular modern techniques for regression and variable selection: Sparse regularization. The goal is for you to:

□ Learn regularization with the L1 norm.

□ Understand how regularizers can be used to automatically select input features.

Understand the concept of sub-gradients as part of the derivation of an algorithm.

□ Understand the pseudo-code of a coordinate descent algorithm to estimate the parameters of linear sparse models.

Selecting features for prediction

Selecting features for prediction

As δ increases, $t(\delta)$ decreases and each θ_i goes to zero, but too slowly for ridge. Lasso will ensure that irrelevant features x_i have weight $\theta_i = 0$.

[Hastie, Tibshirani & Friedman book]

Differentiating the objective function

Differentiating the objective function

Subdifferentials

[Wikipedia]

$$\partial_{\theta_j} J(\boldsymbol{\theta}) = a_j \theta_j - c_j + \delta^2 \partial_{\theta_j} |\theta_j|$$

$$= \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1,1] & \text{if } x = 0 \\ \{+1\} & \text{if } x > 0 \end{cases}$$

$$= \begin{cases} \{a_j \theta_j - c_j - |\delta^2\} & \text{if } \theta_j < 0 \leftarrow 2|\theta_j| = -1 \\ [-c_j - |\delta^2, -c_j + |\delta^2] & \text{if } \theta_j = 0 \\ \{a_j \theta_j - c_j + |\delta^2\} & \text{if } \theta_j > 0 \leftarrow 3|\theta_j| = +1 \end{cases}$$

Hence, the estimate of the *j*-th parameter, *given the other parameters*, is

$$\widehat{\theta}_{j} = \begin{cases} (c_{j} + \delta^{2})/a_{j} & \text{if } c_{j} \leq -\delta^{2} \text{ when } \Theta_{j}(o) \\ 0 & \text{if } c_{j} \in [-\delta^{2}, \delta^{2}] \\ (c_{j} - \delta^{2})/a_{j} & \text{if } c_{j} > \delta^{2} \end{cases} \qquad \begin{array}{c} \mathcal{G}_{j} \oplus_{j} - c_{j} - S^{2} = 0 \\ \mathcal{G}_{j} \oplus_{j} = c_{j} + S^{2} \\ \mathcal{G}_{j} = c_{j} + S^$$

Coordinate descent algorithm for sparse prediction

-)1. Initialize Θ , e.g. $\Theta = (X^T X + S^2 I)^{-1} X^T X^{-1} (ridge)$ 2. REPEAT UNTIL CONVERGED % X is n by d % Y is h by 1 For j=1,2,..., d DO 3. $a_j = 2 \sum_{i=1}^n x_{ij}^2 \checkmark$ 4. $C_{j} = 2 \sum_{i=1}^{n} x_{ij} \left(Y_{i} - \underline{x}_{i}^{T} \Theta + x_{ij} \Theta_{j} \right) \mathcal{U}$ 5. $If C_j < -\delta^2$ 6. $\Theta_{j} = (C_{j} + \delta^{2}) / \alpha_{j}$ 7. Elseif C; > s2 8. $\Theta_{i} = (c_{j} - \delta^{2})/\alpha_{j}$ 9. 10. ELSE $\Theta_i = O$ 11.

The effect of L1 regularization on PCA $\mathbf{B}^*, \mathbf{C}^* = \arg\min_{\mathbf{B}, \mathbf{C}} ||\mathbf{X} - \mathbf{B}\mathbf{C}||_2^2 + \lambda ||\mathbf{C}||_1 \qquad \begin{array}{c} \mathbf{B} = \mathbf{V} \geq \mathbf{I} \\ \mathbf{X} = \mathbf{V} \\ \mathbf{X} = \mathbf{V} \\ \mathbf{X} = \mathbf{V} \\ \mathbf{X} = \mathbf{V} \\ \mathbf{X} \\ \mathbf{X} = \mathbf{V} \\ \mathbf{X} \\$

רי איז	1		1	ι.
	東京	ž	916.	-10
	136	2	1	DR.
	200		60	22
		98 S	##	20
	画の			
	5333			
物影				當部

Next lecture

In the next lecture, we go back to probability so as to get enough background to understand classification.