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Outline of the lecture

Thislecture will teach you how to fit nonlinear functions by using
bases functions and how to control model complexity. The goal isfor
you to:

U Learn polynomial regression.

O Understand that, if the bases are given, the problem of |earning
the parametersis still linear.

O Understand the effect of the regularizer on function smoothness.
1 Learn about RBFs and kernel regression.

1 Learn to choose the regularization coefficient by cross-
validation.

O Learn about training error and validation error.

1 Understand the effects of the number of data and the number of
basis functions on gener alization.



Going nonlinear via basis functions

We introduce basis functions ¢(-) to deal with nonlinearity:

y(x) = G(x)0 + ¢

For example, ¢(x) = [1, z, z°]
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Going nonlinear via basis functions

y(x) = p(x)0 + €




Example: with a polynomial of degree 14
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Kernel regression and RBFs

We can use kernels or radial basis functions (RBF's) as features:

¢(X) — [/{(Xa M, )‘)7 SR K(Xa Ha; A)]) €.g. /i(X, L, )\) = 6(_%HX_"L’L'”2)
V%)= @) 8 =16,+ k(X , t;, A) G, +... +K(X; , t4y, A) 6,

N A ey Cux-2ut “Ux-4lt
Example .- Joy= e X -1 o + e 0x z\l@ e 93

I3
7 ? W D//Aa+a pair (Xc, )

LK (x 474 371)

.fol'

. !
The ?ren% Qeurue \S & vJe[?g,(¢A Suw ol -\-\-( 3 f(A Qupve s



We can choose the locations 4/ of the basis functions to be the inputs.
That is, £ =x; . These basis functions are the known as kernels.

The choice of width A istricky, asillustrated below.
kernels
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The big question Is how do we
choose the regularization coefficient,
the width of the kernels or the
polynomial order?



Solution: cross-validation
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K-fold crossvalidation

run 3

run 5

The idea is simple: we split the training data into K folds; then, for each
fold k € {1,..., K}, we train on all the folds but the k’th, and test on the
k’th, in a round-robin fashion.

It is common to use K = 5; this is called 5-fold CV.

If we set K = N, then we get a method called leave-one out cross
validation, or LOOCYV, since in fold 7, we train on all the data cases
except for ¢, and then test on 1.



Example: Ridge regression with polynomial of degree 14
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Next lecture

In the next lecture, we study the problem of feature selection and
Introduce a new form of regularizer: the L, norm.

Thistype of regularization is at the heart of arecent revolution in data
acquisition known as compressed sensing.



