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Outline of the lecture

This lecture introduces us to the topicsoper vised learning. Here
the data consists afiput-output pairs. Inputs are also often referred
to ascovariates, predictorsandfeatures, while outputs are known
asvariates andlabels. The goal of the lecture is for you to:

1 Understand the supervised learning set

1 Understand linear regression (akast squares)

1 Understand how to apply linear regression models to make
predictions.

1 Learn to derive the least squares estimate by optimization.



Linear supervised learni

1 Many real processes can deproximateawvith linear models.
d Linear regression often appears asaiuleof larger systems.
[ Linear problems can be solvanalytically.

O Linear prediction provides an introduction to many ofdhes
conceptof machine learning.



We are given a training dataset of n instances of input-ouput pairs
{xl 0 Yin f- Bach input x; € RY*4 js a vector with d attributes. The
inputs are also known as‘p'f’e'aﬁors or covariates. The output, often
referred to as the target, will be assumed to be univariate, y; € R, for

NNOW.

A typical dataset with n = 4 instances and 2 attributes would look
like the following table:

Wind speed People inside building Energy requirement

100 2 —1h. ?e{h
50 42 25
45 31 22
60 35 _ 18
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Energy demand prediction

Given the training set {x1.,, 1., }, we would like to learn a model of
how the inputs affect the outputs. Given this model and a new value
of the input x,,,1, we can use the model to make a prediction 7(x,,.1).




Prostate cancer example

 Goal Predict a prostate-specific
antigen (log ofpsg from a number of
clinical measures in men who are about
to receive a radical prostatectomy.

dTheinputsare:

® Log cancer volumedavol) s
» Log prostate weighilweighi) v

* Age

» Log of the amount of benign prostatic hyperplasia
(Ibph)

» Seminal vesicle invasiors\) - binary

» Log of capsular penetratioit)

» Gleason scorey(easol) —ordered categorical

» Percent of Gleason scores 4 op§d49

e bsile

/

[Hastie, Tibshirani & Friedman book]

Which inputs are more important?




y(xi) = 9\ tafe Goal: So\ \re(‘ﬁw
= o and O
J : - 91 — & 92 /a




Ko = heia\-\

. . . . y {
(- LInear prediction ? P

In general, the linear model is expressed as follows: -

7 = X ~ Ui = d =
10, 191“(*593 yi_;miﬂj = X0+ %0+ XMB*

where we have assumed that x;; = 1 so that 6; corresponds to the
intercept of the line with the vertical axis. 6, is known as the bias or
offset.

In matrix form, the expressi e linear model is:
5 —x0. £

with y € R™*!, X e R"™*4 and 8 € R That§

Y1 _LU,M s Ld




Wind speed People inside building Energy requirement

100 2 D
50 42 25
45 31 22
60 35 18

For our energy prediction example, we would form the following ma-
trices with n =4 and d = 3:

5 1 100 27 .-
25 1 50 42 L
3’:22’)‘;:14531"9222
18 1 60 35] b

A
Suppose that 8 = [1 0 0.5]". Then, by multiplying X times ’é, we
would get the following predictions on t&e training set:

" 27 1 100 27 (f
S22 _ |t 50 42|,
Y = 116.5 L 45 31| |,

185 |1 60 35| L -



Linear prediction

Likewise, for a point that we have never seen before, say x =[50 20],
we generate the following prediction:
Yne ©

() =[150 20 =1+0+10=11.




Optimization approach -~

Our aim is to mininimise the quadratic cost between the output labels

and the model predictions " )LX@ “l XT - (s(' %
J(0) = (y — X0)"(y — X0) = Y (y, — x]0)’ o ()
L p——— i=1 |




Optlmlzatlon n 4

x\ \Xol J* (L
,\T Y)x) Jx\ | T \
A= X (y X0)' (y — X0) = (\/5 =¥ 0
( b(l \_/\,&—-h—)\/'\’\‘—) i<\ W
We will need the '

x|
results from matrix dlfferentlatlon
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Least squares estimates

ENVAR T _ ~|
Xy +2X'¥x® = 0O [X} /UO




Multiple outputs

If we have several outputs y,; € R, our linear regression expression
A

becomes: ) ) o 7
9 c=1 uasl TN
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Next lecture

In the next lecture, we learn to derive the linear regressionagesm
by maximum likelihood with multivariate Gaussian distributions.



