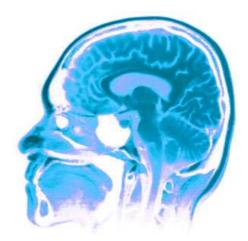


CPSC340



Linear prediction

Nando de Freitas October, 2012 University of British Columbia

Outline of the lecture

This lecture introduces us to the topic of **supervised learning**. Here the data consists of **input-output** pairs. Inputs are also often referred to as **covariates**, **predictors** and **features**; while outputs are known as **variates** and **labels**. The goal of the lecture is for you to:

□ Understand the supervised learning setting.

- Understand linear regression (aka least squares)
- Understand how to apply linear regression models to make predictions.
- □ Learn to derive the least squares estimate by optimization.

Linear supervised learning

□ Many real processes can be approximated with linear models.

□ Linear regression often appears as a module of larger systems.

□ Linear problems can be solved analytically.

□ Linear prediction provides an introduction to many of the core concepts of machine learning.

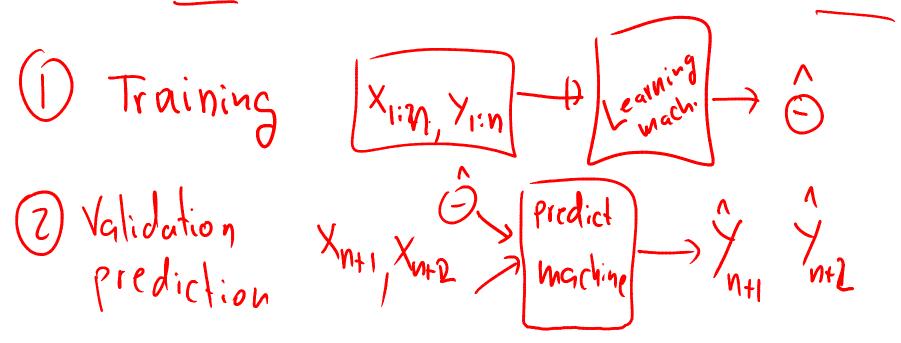
We are given a training dataset of n instances of input-ouput pairs $\{\mathbf{x}_{1:n}, \mathbf{y}_{1:n}\}$. Each input $\mathbf{x}_i \in \mathbb{R}^{1 \times d}$ is a vector with d attributes. The inputs are also known as predictors or covariates. The output, often referred to as the target, will be assumed to be univariate, $\mathbf{y}_i \in \mathbb{R}$, for now.

A typical dataset with n = 4 instances and 2 attributes would look like the following table:

_	Wind speed	People inside building	Energy requirement
-	100	2	5 th. setting
	50	42	25
	45	31	22
	60	35	18
day l	$X_{1} = (100)^{2}$) $\gamma_1 = 5$	(Y (X)

Energy demand prediction

Given the training set $\{\mathbf{x}_{1:n}, \mathbf{y}_{1:n}\}$, we would like to learn a model of how the inputs affect the outputs. Given this model and a new value of the input \mathbf{x}_{n+1} , we can use the model to make a prediction $\hat{y}(\mathbf{x}_{n+1})$.



Prostate cancer example

Goal: Predict a prostate-specific antigen (log of lpsa) from a number of clinical measures in men who are about to receive a radical prostatectomy.

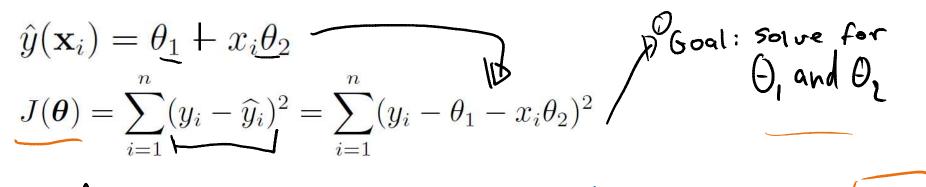
The inputs are:

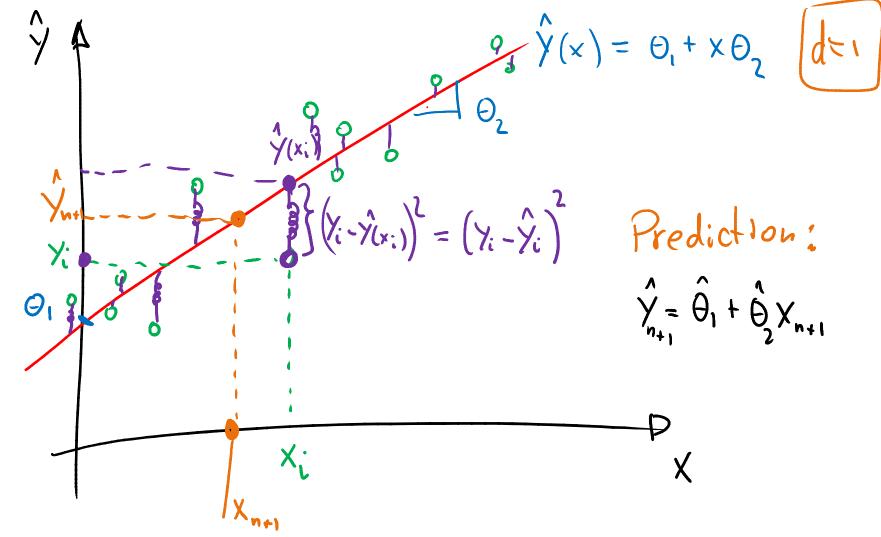
- Log cancer volume (lcavol)Log prostate weight (lweight)
- Age
- Log of the amount of benign prostatic hyperplasia (lbph)
- Seminal vesicle invasion (svi) *binary*
- Log of capsular penetration (lcp)
- Gleason score (gleason) ordered categorical
- Percent of Gleason scores 4 or 5 (pgg45)

Whi<u>ch inputs</u> are more important?

websile

[Hastie, Tibshirani & Friedman book]





In general, the linear model is expressed as follows:

$$\gamma = 1 \Theta_1 + \chi_{i_2} \Theta_{1+} \chi_{i_3} \Theta_{3+}$$

XiL

Xiz.

$$\widehat{y}_{i} = \sum_{j=1}^{d} x_{ij} \theta_{j} \succeq X_{ij} \theta_{j} + X_{ij} \theta_{j} + \cdots + X_{ij} \theta_{d}$$

 $Y = \Theta_2 + \Theta_1 X_2$ $Y = \sum_{i=1}^{2} \Theta_i X_i X_i^{-1}$

where we have assumed that $x_{i1} = 1$ so that θ_1 corresponds to the intercept of the line with the vertical axis. θ_1 is known as the bias or offset.

In matrix form, the expression for the linear model is:

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta},$$

with $\widehat{\mathbf{y}} \in \mathbb{R}^{n \times 1}$, $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{\theta} \in \mathbb{R}^{d \times 1}$. That is, $\begin{bmatrix} \widehat{y}_1 \\ \vdots \\ \widehat{y}_n \end{bmatrix} = \begin{bmatrix} x_{11} & \cdots & x_{1d} \\ \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{nd} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_d \end{bmatrix}.$

Wind speed	People inside building	Energy requirement
100	2	5
50	42	25
45	31	22
60	35	18

For our energy prediction example, we would form the following matrices with n = 4 and d = 3:

$$\mathbf{y} = \begin{bmatrix} 5\\25\\22\\18 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & 100 & 2\\1 & 50 & 42\\1 & 45 & 31\\1 & 60 & 35 \end{bmatrix}, \quad \boldsymbol{\theta} = \begin{bmatrix} \theta_1\\\theta_2\\\theta_3 \end{bmatrix}.$$

Suppose that $\hat{\boldsymbol{\theta}} = \begin{bmatrix} 1 & 0 & 0.5 \end{bmatrix}^T$. Then, by multiplying **X** times $\hat{\boldsymbol{\theta}}$, we would get the following predictions on the training set:

$$\widehat{\mathbf{y}} = \begin{bmatrix} 2\\22\\16.5\\18.5 \end{bmatrix} = \begin{bmatrix} 1 & 100 & 2\\1 & 50 & 42\\1 & 45 & 31\\1 & 60 & 35 \end{bmatrix} \begin{bmatrix} 1\\0\\0.5 \end{bmatrix}.$$

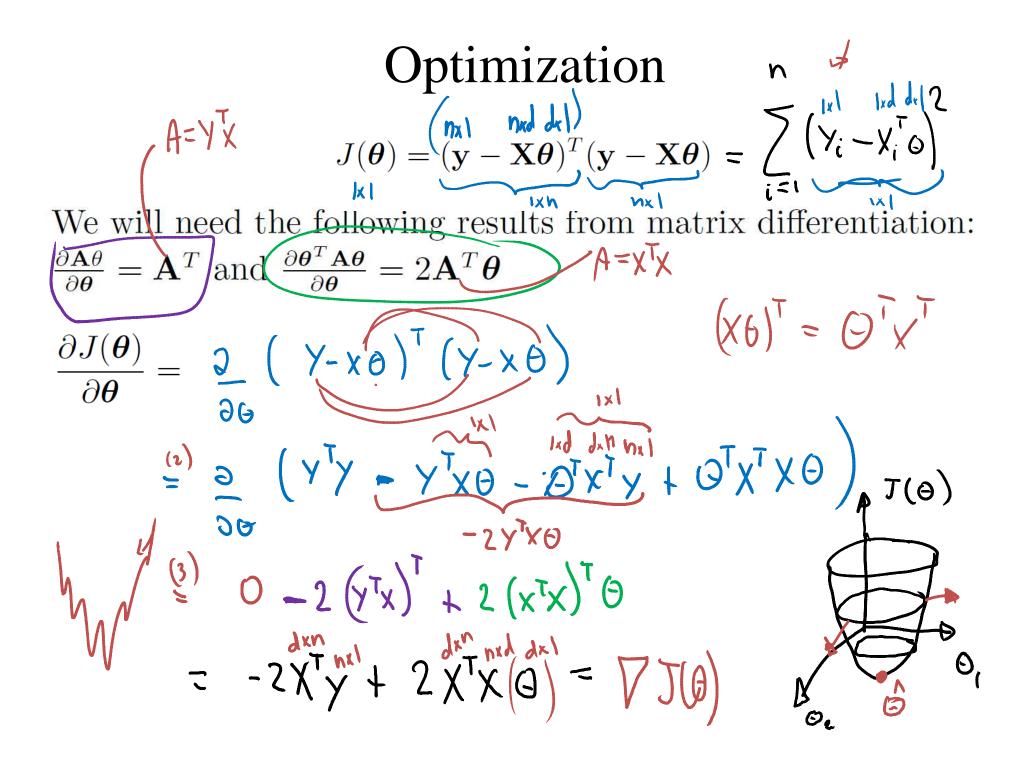
Linear prediction

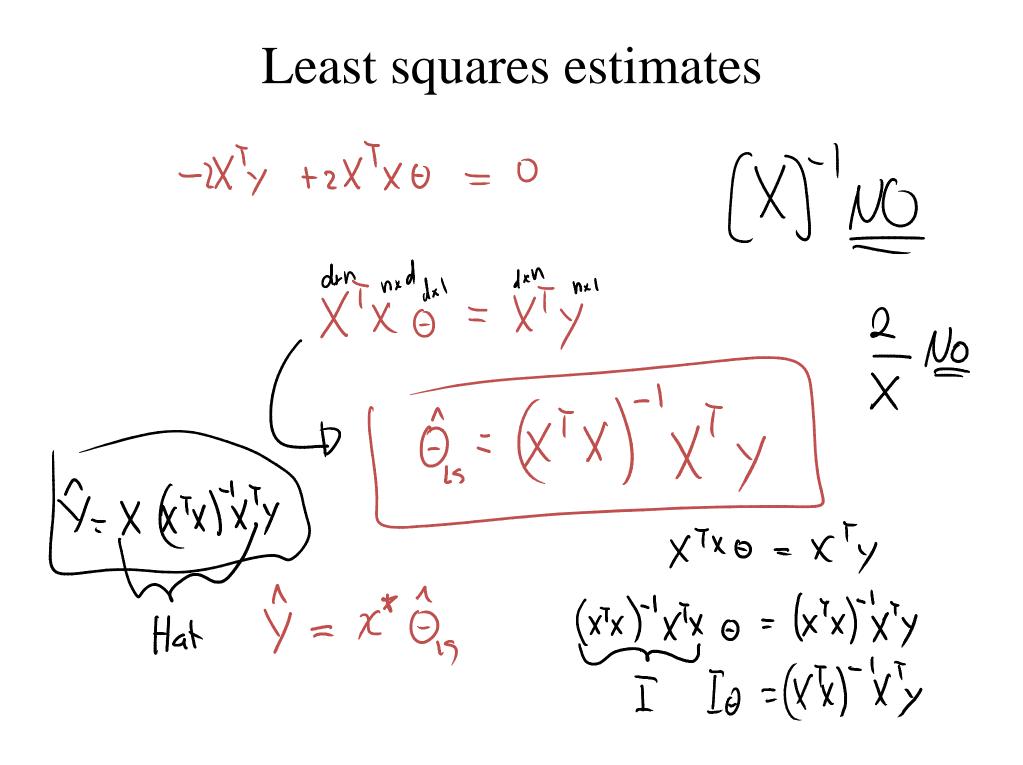
Likewise, for a point that we have never seen before, say $x = [50 \ 20]$, we generate the following prediction:

$$\hat{\mathbf{y}}(\mathbf{x}) = \begin{bmatrix} 1 \ 50 \ 20 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0.5 \end{bmatrix} = 1 + 0 + 10 = 11.$$

Optimization approach $\hat{\gamma} = \chi \hat{\varphi}$

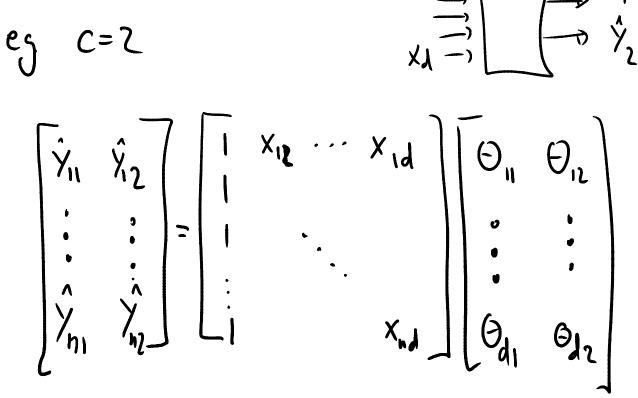
Our aim is to minimise the quadratic cost between the output labels and the model predictions $\gamma \gamma \gamma \gamma \Theta^2$





Multiple outputs

If we have several outputs $\mathbf{y}_i \in \mathbb{R}^c$, our linear regression expression becomes:



Next lecture

In the next lecture, we learn to derive the linear regression estimates by maximum likelihood with multivariate Gaussian distributions.