

CPSC340



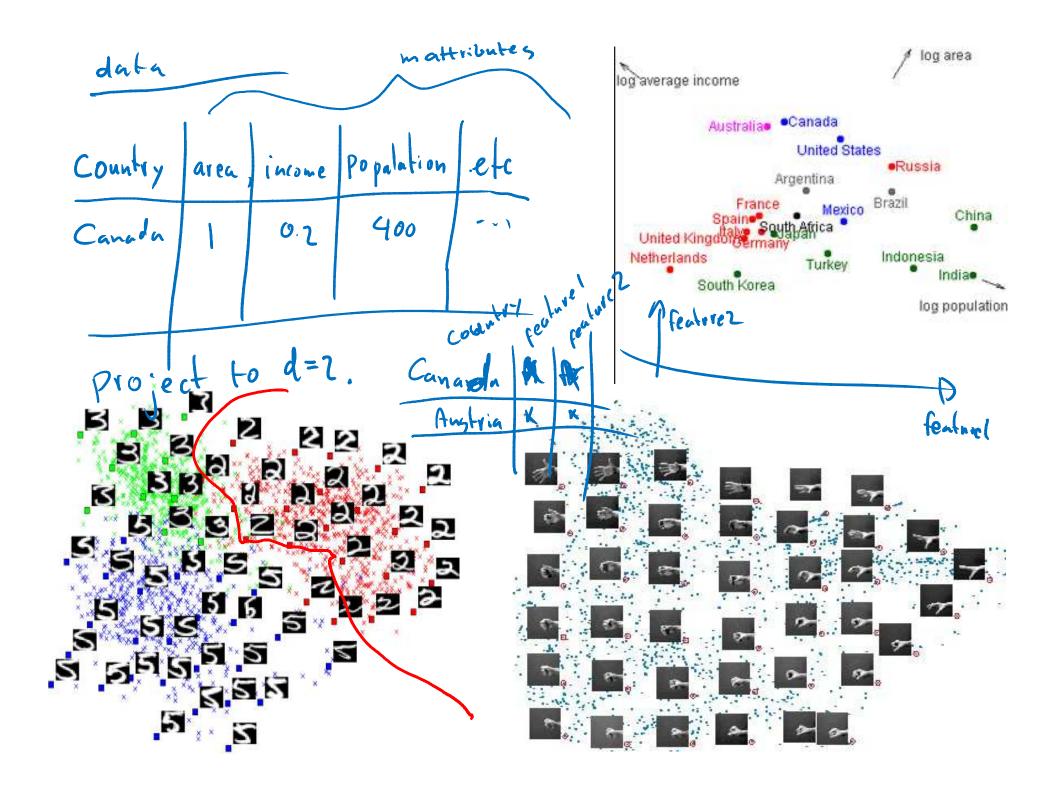
Principal Component Analysis (PCA)

Nando de Freitas October, 2012 University of British Columbia

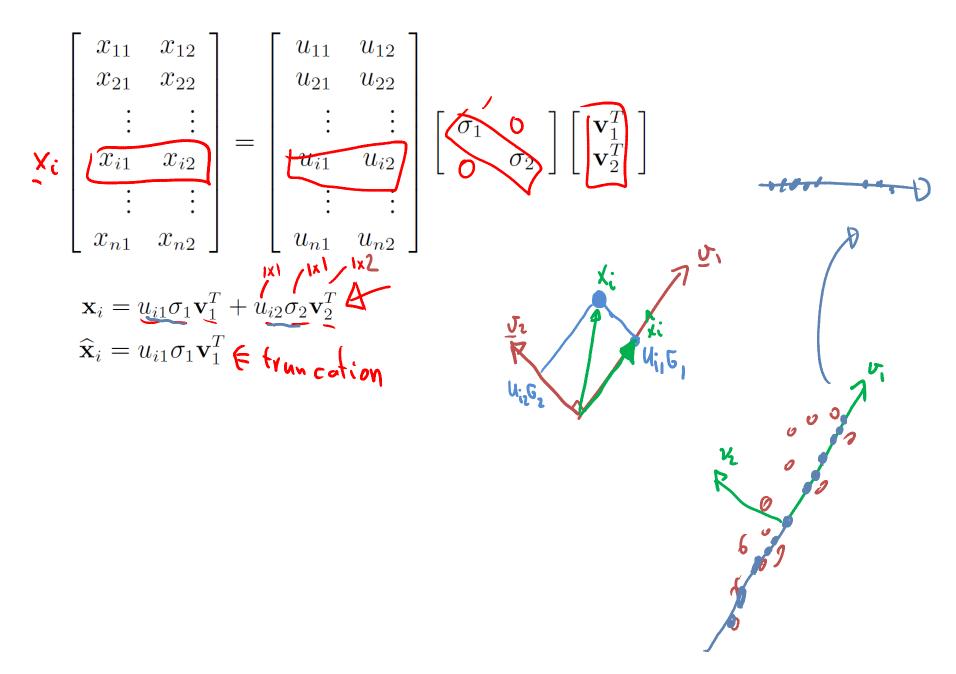
Outline of the lecture

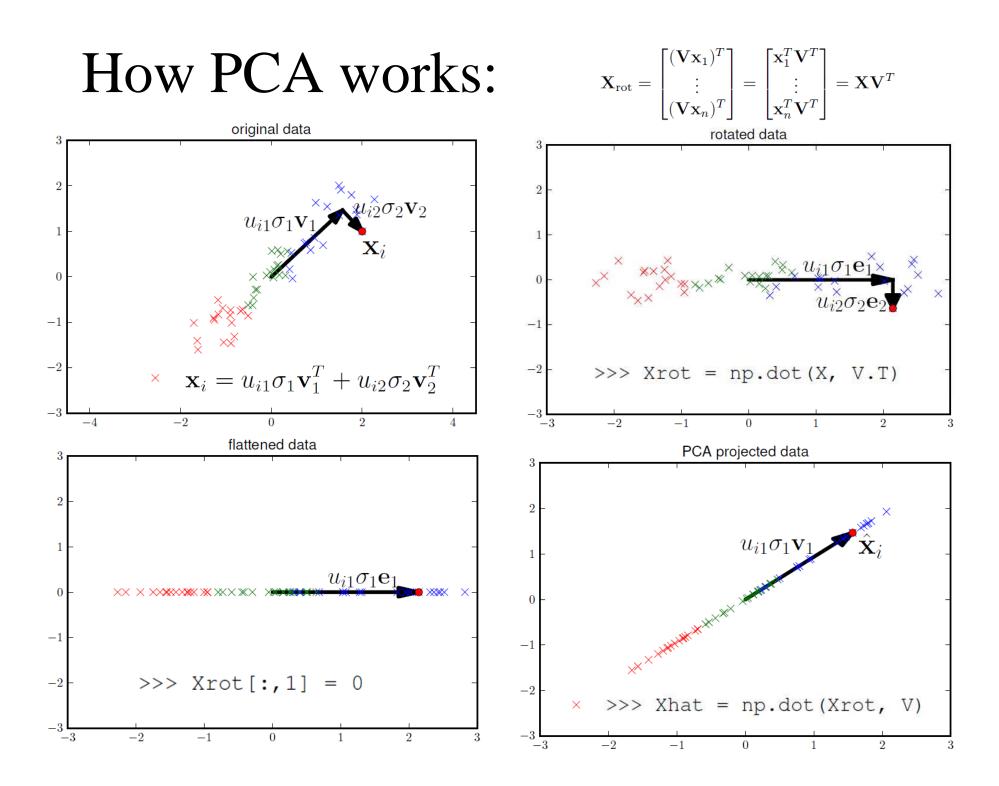
This lecture explains one of the most widely used techniques for dimensionality reduction: Principal Component Analysis (PCA). You will learn:

How PCA dimensionality reduction with the SVD
 To Apply PCA for visualization tasks
 That PCA is a linear method that minimizes reconstruction error. That is: the SVD emerges as the optimal solution to an obvious optimization problem, namely *what you imagine should look like what you see!*



PCA derivation: 2D to 1D

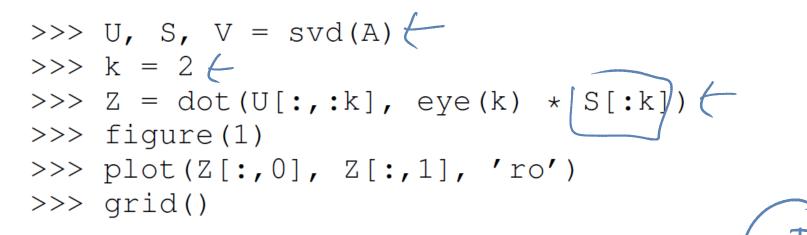




PCA for 2D visualization $I_i \text{ image } i, \text{ which is yaxyo}$ $I_i \text{ image } i,$

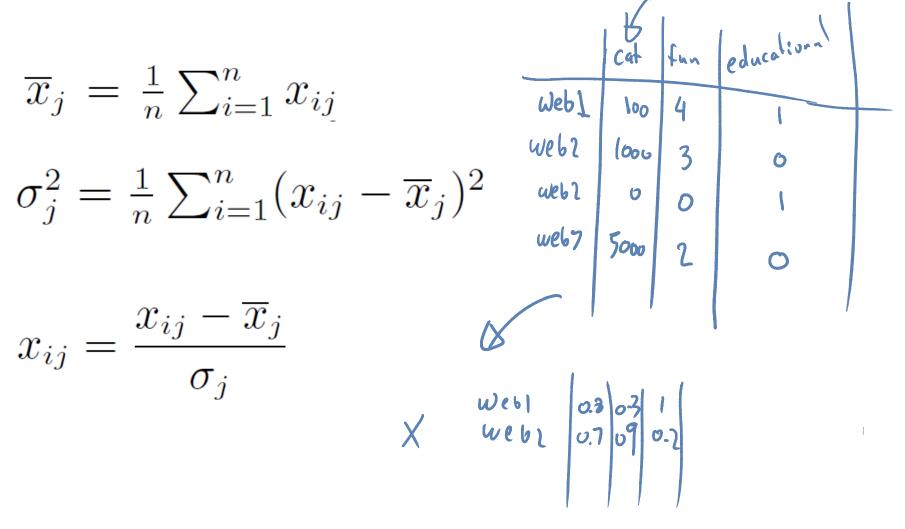
For example, we can take several 16×16 images of the digit 2 and project them to 2D. The images can be written as vectors with 256 entries. We then from the matrix $\mathbf{A} \in \mathbb{R}^{n \times 256}$, carry out the SVD and truncate it to k = 2. Then the components $\mathbf{U}_k \boldsymbol{\Sigma}_k$ are 2 vectors with n data entries. We can plot these 2D points on the screen to visualize the data.

PCA in python



Standardize the data first!

It is a good idea to standardize the data before doing PCA so that all entries of matrix X have similar magnitude. We do it as follows:



Advanced: PCA as orthogonal reconstruction

Suppose we are given the n by d data matrix \mathbf{X} and that we want to find a linear reconstruction of this matrix in terms of a set of neural responses z and synaptic weights w. We can do this by minimizing the following quadratic difference:

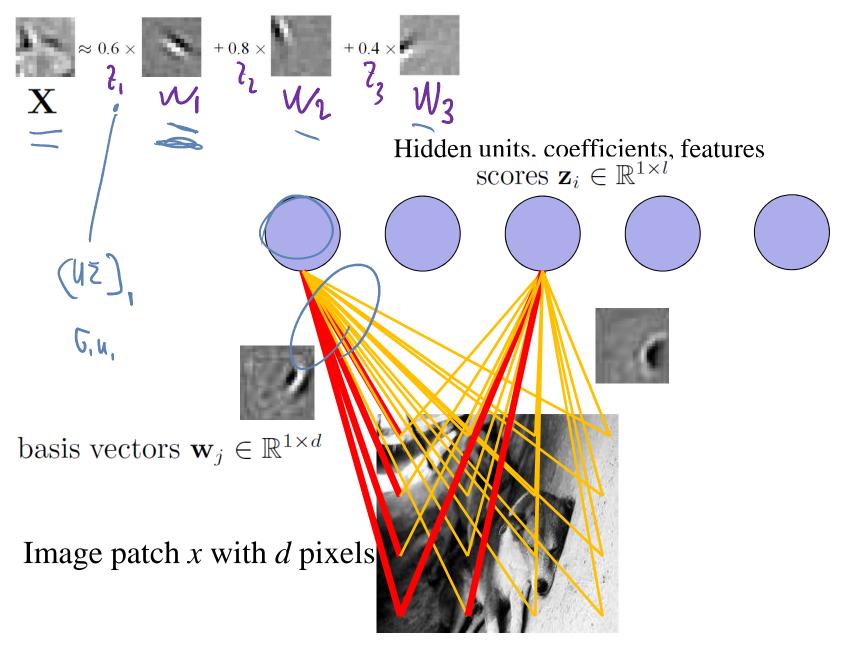
$$J(\mathbf{W}, \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i} - \hat{\mathbf{x}}_{i}||^{2} = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{z}_{i}\mathbf{W}||^{2}$$
while to the constraint that **W** is orthogonal.

Subject to the constraint that W is orthogonal.

If we solve the above optimization problem, the answer is:

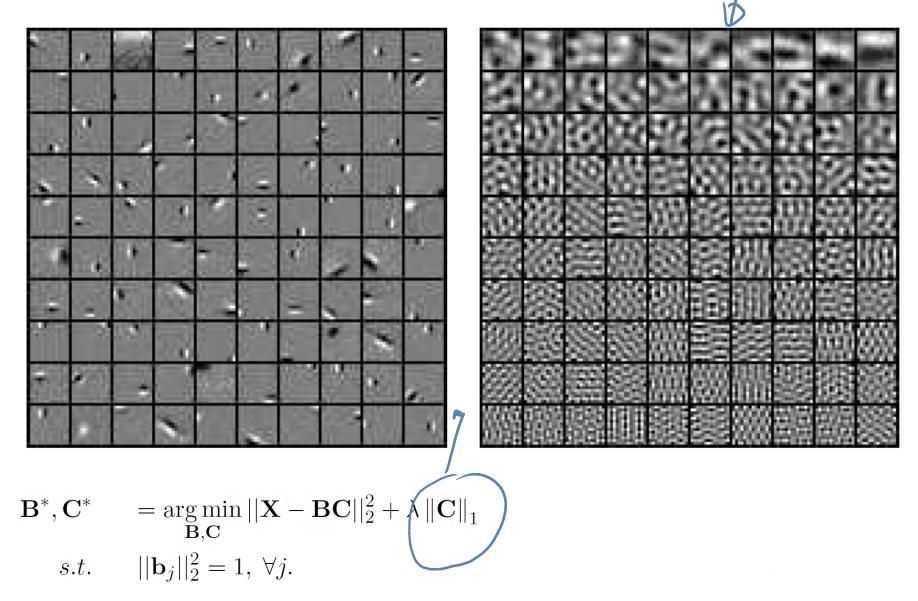
 $\mathbf{Z} = \mathbf{U} \boldsymbol{\Sigma}$

That is, the SVD gives the optimal linear reconstruction.



data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$

The weights found with **sparse coding** and **PCA**



Next lecture

In the next lecture we begin our introduction to supervised learning.