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Outline of the lecture

Thislecture explains one of the most widely used techniques for
dimensionality reduction: Principal Component Analysis (PCA) . You

will learn:

d How PCA dimensionality reduction with the SVD

1 To Apply PCA for visualization tasks

d That PCA isalinear method that minimizes reconstruction
error. That is. the SVD emerges as the optimal solution to an
obvious optimization problem, namely what you imagine should
look like what you see!
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PCA derivation: 2D to 1D
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How PCA works: N R B D
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>>> Xrot[:,1] = 0 i Y
X >>> Xhat = np.dot (Xrot, V)
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PCA for 2D visualization
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For example, we can take several 16 x 16 images of the D

digit 2 and project them to 2D. The images can be written e
as vectors with 256 entries. We then from the matrix A_&
R"*250 carry out the SVD and truncate it to & = 2. Then
the components U322, are 2 vectors with n data entries. We

can plot these 2D points on the screen to visualize the data.



PCA In python

>>> U, S, V = svd(’) {—
>>> k = 2 £
>>> 7 = dot (Ul:,:k], eye(k) =[S[:k]) {(—
>>> figure (1)
>>> plot(Z[:,0], Z[:,1], 'ro’)
>>> grid()
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Standardize the data first!

It isa good idea to standardize the data before doing PCA so that all
entries of matrix X have similar magnitude. We do it as follows:
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Advanced: PCA as orthogonal reconstruction

uppose we are given the n by d data matrix X and that we want to
find a linear reconstruction of this matrix in terms of a set of neural
responses z and synaptic welghts w. We can do this by minimizing the
following quadratic difference:

1 T 1 T
J(W.Z) = =3 [ =%l = — > [~z WP
1=1 1=1

Subject to the constraint that \W is orthogonal. T

If we solve the above optimization problem, the answer is.

w=)

Z=U2Z
That is, the SVD gives the optimal linear reconstruction.



Hidden units. coefficients, features
scores z; € R !

data matrix X € R?»*¢



The wealghts found with
spar se coding and PCA
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Next lecture

In the next lecture we begin our introduction to supervised learning.



