Lecture 7:
Linear supervised learning

Nando de Freitas

September 2009

Qutline

Linear regression is a supervised learning task. It is of great interest
because:

» Many real processes can be approximated with linear models.
* Linear regression appears as part of larger problems.

* It can be solved analytically.

* It illustrates many of the approaches to machine learning.
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L_east squares
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Learning and prediction with least squares
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_east squares

Mathematically, the linear model is expressed as follows:
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|_east squares with multiplfe outputs

[f we have several outputs y; € R our lin&m‘ regression

expression becomes:
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Optimization approach

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions
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Optimization approach
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Geometric approach
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Probability approach: Univariate Gaussian distribution
The probability density function of a Gaussian distribution

is given by
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Multivariate Gaussian distribution
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Multivariate Gaussian distribution

We can interpret each component of x, for example, as
a feature of an image such as colour or texture. The term
2(x—p)"E7 (w—p) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and p.
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Maximum likelihood approach
If our errors are Gaussian distributed, we can use the model
W,
Y = X0+ N(0.0°) g \ - (@)
L))

Note that the mean of Y is X@ and that its variance is
o2]. So we can equivalently write this expression using the

probability density of Y given X, 6 and o Ss GL I
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Maximum likelihood

The maximum likelihood (ML) estimate of € is obtained by
taking the derivative of the log-likelihood, log p(Y'| X, 0, o).
The idea of maximum likelihood learning is to maximise the

likelihood of seeing some data Y by modifying the parame-

ters (6, 7).
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Maximum likelihood

/ Proceeding in the same way, the ML estimate of o 1\
L\
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Lecture 8:
Regularization and ridge regression

Nando de Freitas

September 2009

All the answers so far are of the form
~ T™
i—(xx®1xTy

Theyv require the inversion of X X7. This can lead to prob-
lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:
- T . e
o= (xx8 52 1xTy

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

CH) =Y — X (Y — X8)+ %079
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Ridge as constrained optimization

min - {(Y — XO)T(Y — X0)}

0: 079 <t
Large values of 8 are penalised. We are shrinking ¢ towards
zero. This can be used to carry out feature weighting,.
An input x; ; weighted by a small 6; will have less

influence on the ouptut ;.
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The Lasso
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Spectral view of ridge regression
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Regularization and noise filtering

The filter factor
. (7 2
.}[f 2 —|— (>2
penalises small values of 02 (they go to zero at a faster rate).
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Regularization and noise filtering

Small eigenvectors tend to be wobbly. The Ridge filter fac-
tor f; gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).

The smoothness parameter 82 is often estimated by cross-

validation or Bayesian hierarchical methods.
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Lecture 9:
Bayesian learning for linear models

Nando de Freitas

September 2009

Bayesian linear-Gaussian supervised learning

In the Bayesian linear prediction setting, we focus on com-

puting the posterior:

p(OX,Y) x p(YVI|X.0)p(0)

v _ 1 v vaT(v_y _
= (27((_72) 2 ¢ gz Y XOT0 me(é’)

We often want to maximise the posterior — that is, we look
for the maximum a poteriori (MAP) estimate. In this case,
the choice of prior determines a type of constraint! For ex-

: : . o 5
ample, consider a Gaussian prior 8 ~ N (0.6%0-1;). Then
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Bayesian posterior
So the posterior for 6 is Gaussian:
POIX.Y) = |2mo?M| 7 e a0 M
with sufficient statistics:

E@|X.Y) = (XXT +6721)7 ' XY
var(8|X,Y) = (XXT +67%1,)7'0?
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Bayesian estimates, ridge and ML

The MAP point estimate is:
Orap = (XXT 407211 XTy

[t is the same as the ridge estimate (except for a trivial
negative sign in the exponent of §), which results from the
Lo constraint. A flat (“vague™) prior with large variance

(large o) leads to the ML estimate.

Oriap = Oridge  ——  Our =0svp =0pg
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