Lecture 7:
Linear supervised learning

Nando de Freitas

September 2009

Outline

Linear regression is a supervised learning task. It is of gread¢shte
because:

* Many real processes can be approximated with linear models.
e Linear regression appears as part of larger prok
* It can be solved analytically.

* It illustrates many of the approaches to machine learning.
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Least squares

Given the data {xy.,, y1.,}, with z; € R? and 3, € R, we
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Least squares
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Learning and prediction with least square:
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Least squares

Mathematically, the linear model is expressed as follows:

d
Yy, = By + 2 '.’.1’;.;'6_/‘
j=1

d
We let ;5 = 1 to obtain 7; = Z xi8

P37 ]
J=0

A~

In matrix form. this expression is Y = X6

Y1 Ly - o
Yn Tpo -~ Tnd Hri
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Least squares with multiple outputs

[f we have several outputs y; € R“ our linear regression

exXNTress1IOn l"n‘;‘r"{'l'l"l"ltl‘ﬁ-&'
Tl UoS1UL CUVEEES,

(/7 I

Z—

\_ J

CPSC 340 7

Linear classification
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Optimization approach

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

) =Y - X (v - X8
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Optimization approach

We will need the following results from matrix differenti-

ation: % — AT and ‘)H.)Ff” — 9247y
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Optimization approach

ﬁ? These are the normal equations. The solution (D

2 —

mate) Is:

h—

The corresponding predictions are

o~

V=HY =

where H is the “hat” matrix.

N /

CPSC 340 11

Geometric approach
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Probability approach: Univariate Gaussian distigout
The probability density function of a (Gaussian distribution

18 given hy
! )2
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nlr) = —e 20
P =T
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where ¢ is the mean or center of mass and ¢~ is the variance.
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Multivariate Gaussian distribution

Let 2 € R". The pdf of an n-dimensional Gaussian is given

by
1 "[r P T =)
E(ry)
H =
ﬂu “)
" O1n
T =E[(X — p)(X —p)"]

14

Tij = IE[X; - ﬂ-i)()(j - “J)

CPSC 340




a teature of an image such as colour or texture. The term
L(x— )Y (2 =) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and .
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Y = X0+ N(0.0%])

Note that the mean of Y is X# and that its variance is
a?]. So we can equivalently write this expression using the

probability density of ¥ given X, # and o

—n/2 — A (y-x6)T(Y-X0)
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Maximum likelihood
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Maximum likelihood

The maximum likelihood (ML) estimate of 6 is obtained by

1 rlxr ra

taking the derivative of the log-likelihood, log p(Y'| X, 6. o).
The idea of maximum likelihood learning is to maximise the
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Maximum likelihood

/z/ The ML estimate of 4 is:
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Maximum likelihood
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K/9 Proceeding in the same way, the ML estimate of o Js\
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Lecture 8:
Regularization and ridge regression

Nando de Freitas

September 2009

All the answers so far are of the form
0= (XXHIxTy

They require the inversion of X X7T. This can lead to prob-
lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:
0= (XXT+81)' X"y

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

Ch)=(Y — X0 (Y — X6)+6%"4
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Proof
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Ridge as constrained optimization

min - {(V — X&) (Y — X6)}

6: 6Tg < ¢ -
Large values of # are penalised. We are shrinking 6 towards
zero. This can be used to carry out feature weighting.
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The Lasso

/ N

N v

CPSC 340 25

Spectral view of ridge regression

Again, let X € R™? be factored as X = Uyt = E u;o i"i'--’,'T .
i=1

The least squares prediction is:  Yq = % U Y
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/ - Likewise, for ridge regression we have:
22— d 2

N\ /
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Regularization and noise filtering
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penalises small values of o= (thev go to zero at a faster rate).
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Regularization and noise filtering

Small eigenvectors tend to be wobbly. The Ridge filter fac-
tor f; gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).
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1 ne smootnness parameter 0 15 o1ten estiimated DY Cross-

validation or Bayesian hierarchical methods.
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Minimax and cross-validation
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Lecture 9:
Bayesian learning for linear models

Nando de Freitas

September 2009

BayeS|an linear-Gaussian supervised learning

In the Bayesian linear prediction setting

we focug on com-

o
(=¥

puting the posterior:

p(8|X,Y) o pY ‘Ynﬁ)p(ﬁ
= O (Y X0
We often want to maximise the posterior — that is, we look

for the maximum a potertori (MAP) estimate. In this case,

the choice of prior determines a tyvpe of constraint! For ex-
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Bayesian posterior

So the posterior for € is Gaussian:

with sufficient statistics:

E(|X,Y) = (XXT 452" XY
var(9|X.Y) = (XX' +07%1) "o
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Bayesian estimates, ridge and ML

The MAP point estimate is:

o~

Ouap = (XXT+6720) ' XTY

[t is the same as the ridge estimate (except for a trivial

negative sign in the exponent of ¢), which results from the

Ly constraint. A flat (“vague”) prior with large variance
(large 8) leads to the ML estimate,

o~ - §—0 = o~ ~

Unmap = Uridge —— UMmL =Usvp="0Lg
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