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Qutline

Probabilistic graphical models (also known as Bayesian networks)
combine probability theory and graph theory to represent large
domains of random variables.

We will tackle two tasks: inference and learning.

In inference, we assume we have the conditional probability tables
and focus on estimating the probability of a group of variables given
the other variables. We will derive the celebrated HMM filter as part
of this.

In learning, we compute the conditional probability tables from data.

CPSC 340




Let x denote two random variables x = (a7, 1), each
taking 3 possible values. That is, z; € E = {1,2,3}. Wecan
represent the marginal, conditional and joint distributions

with the following tables:
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e E={1,....r} fori=1:n

size( joint probability table ) =

\ /
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Directed probabilistic graphs

We can exploit conditional independencies and graph theory

to replace large tables by a group of smaller tables.

A directed graph is a pair G = (x,¢e) with nodes xy.,
and directed edges ¢ = {(x;, ;) 1 @ # j}. The nodes will
correspond to r.v.s and the edges to conditional probabilities.

We assume that G is acyclic.
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In general:
.
plry.,) = H-p(:_z':j\pa:r'e-nt,_c;(:_1':,-))
i=1

The size of each table is "%+l where m, is the number of

parents of node ;.

/ / Graphical models are often used as expert systems: \
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Conditional independence
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Efficient inference in DAGS
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Efficient inference in DAGS
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Junction tree algorithm

The idea of replacing sums of products (ac+ab) by products
of sums (a(b+c)) is at the heart of most inference algorithms.
For exact inference, in Gaussian and discrete networks of rea-
sonable size, we use the junction tree algorithm. This

algorithm involves two steps:

L. Converting the directed graph to an undirected graph

called the junction tree.

2. Running belief propagation. That is, replace sums of
S ) )
products by products of sums.
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Hidden Markov Models (HMMs)
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Hidden Markov Models (HMMs)

/ N

\_ /

CPSC 340 15

MREFs

/ N

In undirected graphs, the nodes still represent the random

variables, but the edges represent compatibility functions.

\_ /
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Continuous graphical models
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Parameter learning in DAGs

/ " Let the DAG be

22—

And assume we have collected the data:
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Parameter learning in DAGs

Z2— The conditional probabilities are:
plel)
prla,c=0) x
plrlas,c=1) x
plglB, e =0)

plglBa, e =1)
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Parameter learning in DAGs

K/ and hence, the ML estimates are:
2 —

Now we can carry out inference to answer queries like
K plglr=1). /

~
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K/ plg =0l = 1) - \
2 —

\ /
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Likelihood-based model selection

K/ How about using another model to represent the same data‘.’\
Z—

plely)

p(r|lag, e =0

Q

Q
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p(rlaz, ¢ =1)
)
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Cross-validation for model selection
/ * Let the test data point be x4, = (1,1, 1) and the t\\o\
/ DAGs be denoted M, and M. Then

Plxtest|01. M) =

P(Trest|B2. My) =

\_ /
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Bayesian model choice

The current approach has a few short-comings:
e T'here is no mechanism for incorporating a prior: knowl-

edge.

e The model selection strategy is very dependent on the
parameter estimates. If we have few data points, the

parameter estimates can be misleading.
e Model selection requires extra data (the test dataset).

The Bayesian learning paradigm helps surmount these diffi-

culties.
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