Lecture 6: Probabilistic graphical models

Outline

Probabilistic graphical models (also known as Bayesian networks) combine probability theory and graph theory to represent large domains of random variables.

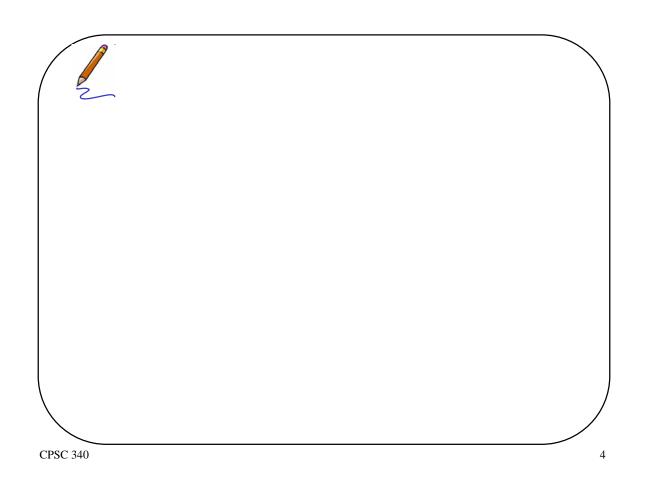
We will tackle two tasks: inference and learning.

In inference, we assume we have the conditional probability tables and focus on estimating the probability of a group of variables given the other variables. We will derive the celebrated HMM filter as part of this.

In learning, we compute the conditional probability tables from data.

CPSC 340 2

Let \mathbf{x} denote two random variables $\mathbf{x} = (x_1, x_2)$, each taking 3 possible values. That is, $x_i \in E = \{1, 2, 3\}$. We can represent the marginal, conditional and joint distributions with the following tables:



$$x_i \in E = \{1, \dots, r\}$$
 for $i = 1 : n$
 $size(\text{ joint probability table }) =$

CPSC 340

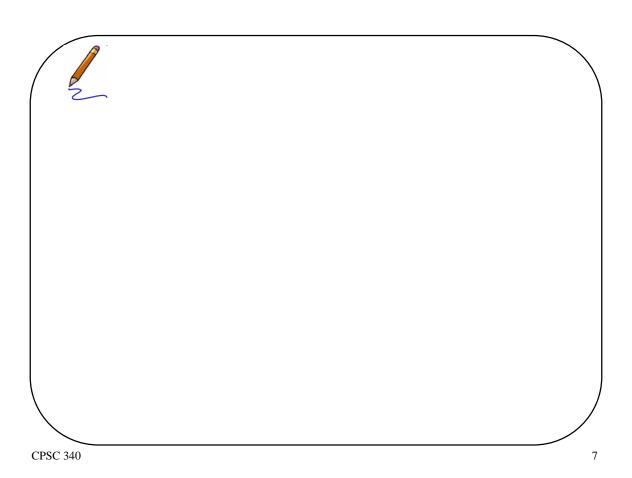
5

Directed probabilistic graphs

We can exploit conditional independencies and graph theory to replace large tables by a group of smaller tables.

A **directed graph** is a pair G = (x, e) with nodes $x_{1:n}$ and directed edges $e = \{(x_i, x_j) : i \neq j\}$. The nodes will correspond to r.v.s and the edges to conditional probabilities. We assume that G is acyclic.

CPSC 340 6

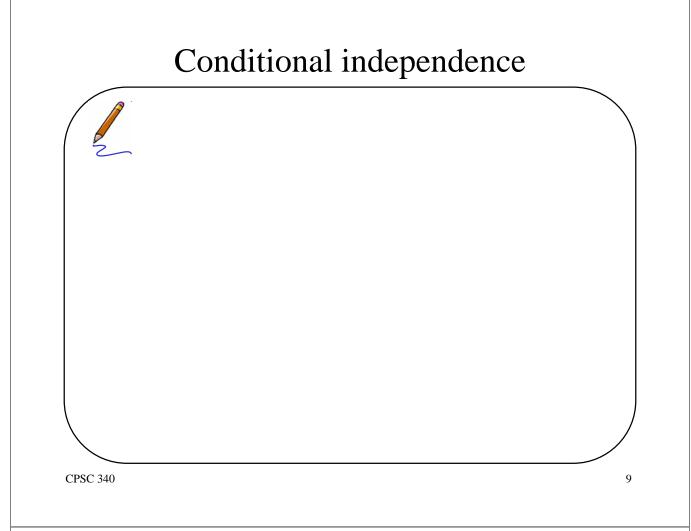


In general:

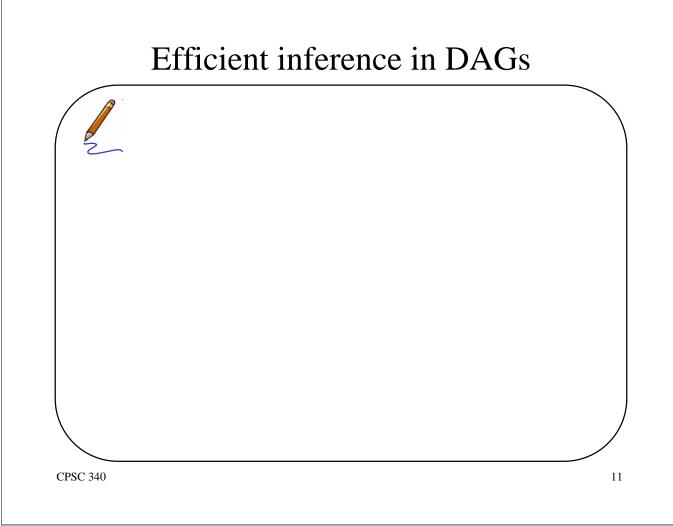
$$p(x_{1:n}) = \prod_{i=1}^{n} p(x_i|parents(x_i))$$

The size of each table is r^{m_i+1} , where m_i is the number of parents of node x_i .

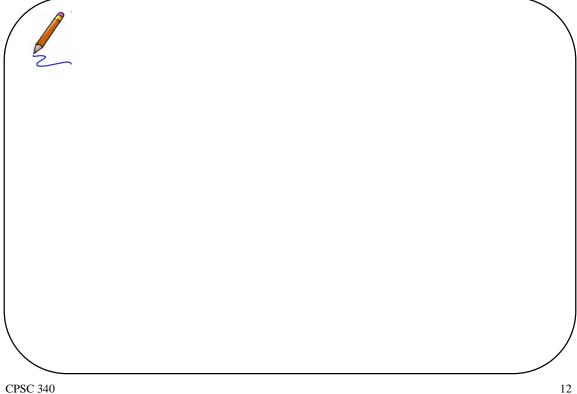
Graphical models are often used as expert systems:



Efficient inference in DAGs



Efficient inference in DAGs



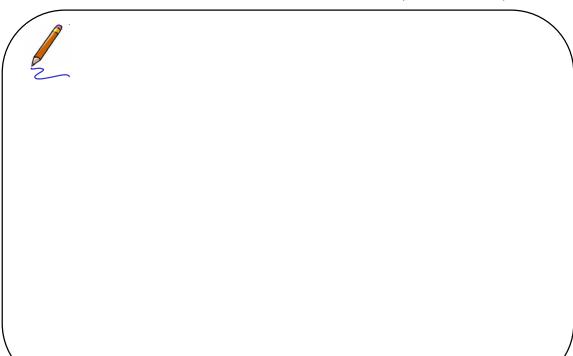
Junction tree algorithm

The idea of replacing sums of products (ac+ab) by products of sums (a(b+c)) is at the heart of most inference algorithms. For exact inference, in Gaussian and discrete networks of reasonable size, we use the **junction tree algorithm**. This algorithm involves two steps:

- 1. Converting the directed graph to an undirected graph called the junction tree.
- 2. Running belief propagation. That is, replace sums of products by products of sums.

CPSC 340

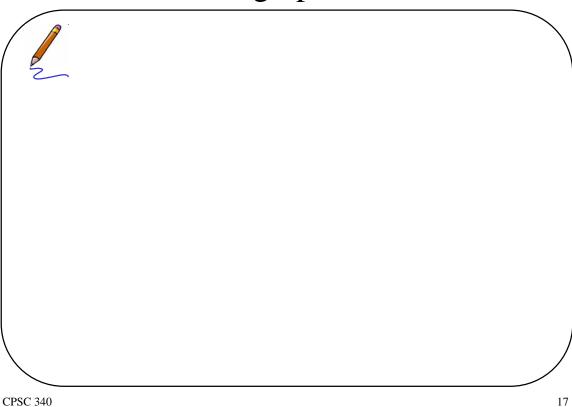
Hidden Markov Models (HMMs)



CPSC 340

MRFs

In undirected graphs, the nodes still represent the random variables, but the edges represent compatibility functions.



Parameter learning in DAGs

Let the DAG be

And assume we have collected the data:

\mathbf{c}	r	\mathbf{g}
0	0	0
0	0	0
1	0	1
1	1	1
1	1	1

Parameter learning in DAGs

The conditional probabilities are:

$$p(c|\gamma) \propto$$
 $p(r|\alpha_1, c=0) \propto$

$$p(r|\alpha_2, c=1) \propto$$

$$p(g|\beta_1, c=0) \propto$$

$$p(g|\beta_2, c=1) \propto$$

CPSC 340

19

Parameter learning in DAGs

and hence, the ML estimates are:

$$\gamma =$$

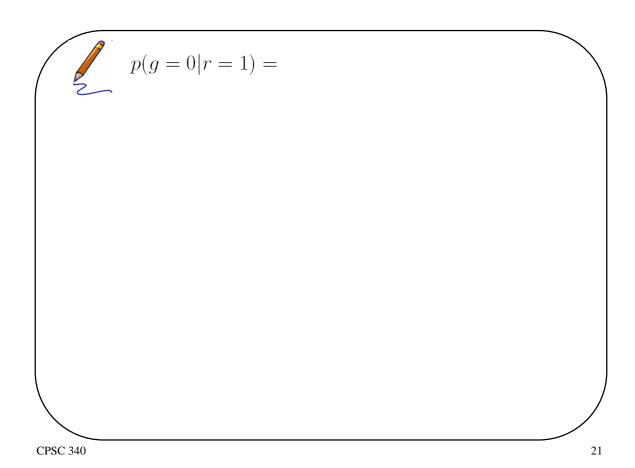
$$\alpha_1 =$$

$$\alpha_2 =$$

$$\beta_1 =$$

$$\beta_2 =$$

Now we can carry out inference to answer queries like p(g|r=1).



Likelihood-based model selection

How about using another model to represent the same data?

$$p(c|\gamma) \propto$$
 $p(r|\alpha_1, c = 0) \propto$
 $p(r|\alpha_2, c = 1) \propto$
 $p(g) \propto$

$$\gamma =$$
 $\alpha_1 =$
 $\alpha_2 =$
 $\beta =$

Cross-validation for model selection

* Let the test data point be $x_{test} = (1, 1, 1)$ and the two DAGs be denoted M_1 and M_2 . Then

$$p(x_{test}|\theta_1, M_1) =$$

$$p(x_{test}|\theta_2, M_2) =$$

CPSC 340 23

Bayesian model choice

The current approach has a few short-comings:

- There is no mechanism for incorporating *a priori* knowledge.
- The model selection strategy is very dependent on the parameter estimates. If we have few data points, the parameter estimates can be misleading.
- Model selection requires extra data (the test dataset).

The Bayesian learning paradigm helps surmount these difficulties.

CPSC 340 24