Lecture 5:
Probability and statistics revision

Nando de Freitas

September 2009

Qutline

In this lecture, we quickly revise the fundamental concepts
of probability, including:

» Marginalization
« Conditioning

* Bayes rule
 Expectation
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Probability

Probability theory is the formal study of the laws of

chance. It is our tool for dealing with uncertainty. Notation:

e Sample space: is the set () of all outcomes of an

experiment.

e Outcome: what we observed. We use w € () to
denote a particular outcome. e.g. for a die we have
Q = {1,2,3,4,5,6} and w could be any of these six

numbers.

e Event: is a subset of €2 that is well defined (measur-
able). e.g. the event A = {cven} if w € {2,4,6}
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Measure interpretation
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Frequentist interpretation
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Axiomatic interpretation

The axiomatic view is a more elegant mathematical solu-
tion. Here, a probabilistic model consists of the triple
(©2, F, P), where €2 is the sample space, F is the sigma-field
(collection of measurable events) and I” is a function map-
ping F to the interval [0, 1]. That is, with each event A € F

we associate a probability P(A).
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The axioms
1. P(@) =0<plA) <1=P(Q)

2. For disjoint sets A, n > 1, we have

P (i 4) — i P(A,)

// Venn diagram: N
o /
OR and AND operations

P(A+ B) = P(A) + P(B) — P(AB)

(/7 N
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Conditional probability

P(AB)
P(B)

P(A|B) &

where P(A|B) is the conditional probability of A given

that B occurs, P(B) is the marginal probability of B

and P(AB) is the joint probability of A and B. In

general, we obtain a chain rule

P(iﬁil:n) - P(44fr.‘141::2—1)P(fﬁin—l‘141:”—2_) CEE P(442‘441)P(141)

/ [f the events A and I3 are independent, we have P(AD) =
2 P

(A)P(B).
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Conditional probability example

\_

K/ % Assume we have an urn with 3 red balls and 1 blue \
'-L—\

ball: U = {r,r,r,b}. What is the probability of drawing

(without replacement) 2 red balls in the first 2 tries?

/
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Marginalization

Let the sets By, be digjoint and | J_, B; = 2. Then
P(A) =) P(A.B)
=1

V3 I
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Marginalization example

K/ “x What is the probability that the second ball (h'am\
Z—

from our urn will be red?

\_ /
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Bayes rule

Bayes rule allows us to reverse probabilities:

P(B|A)P(A)
P(B)

V3 I

2 —

P(A|B) =

N /
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Learning and Bayesian inference

o(hd) - IR
> p(d[h)p(h)

h'eH

Likelihood Posterior
Prior of “sheep” class

<
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Speech recognition

P(words | sound) o P(sound | words) P(words)

Final beliefs Likelihood of data Language model
eg mixture of Gaussians €9 Markov model
- /
N

Hidden Markov Model (HMM)

“Recognize speech” “Wreck a nice beach”

VAR

Bayes rule: Inverting probabilities

Combinining this with marginalisation, we obtain a powerful

tool for statistical modelling:

P(datalmodel;) P(model;)
Z:il P(data|model;) P(model;)

P(model;|data) =

That is, if we have prior probabilities for each model and
generative data, models, we can compute how likely each
model is a posteriori (in light of our prior knowledge and

the evidence brought in by the data).
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Definition of discrete r.v.s

Let E be a discrete set, eg. E = {0,1}. A discrete

random variable (r.v.) is a map from € to E:

X(w): Q— F

such that for all x € E we have {w|X(w) < z} € F. Since
F denotes the measurable sets, this condition simply says

that we can compute (measure) the probability P(X = z).
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Probability distributions

* Assume we are throwing a die and are interested in
the events E' = {even, odd}. Here Q = {1,2,3,4,5,6}.
The r.v. takes the value X (w) = even if w € {2,4,6}
and X (w) = odd if w € {1,3,5}. We describe this r.v.

with a probability distribution p(z;) = P(X =

a) =41 i=1,..., 2
//'
z
\
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The CDF

The cumulative distribution function is defined as

F(x) = P(X <) and would for this example be:

) I

22—
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Expectation

The expectation of a discrete random variable X is
E[X] = E rip(x;)
B
The expectation operator is linear, so E(ax+bxy) = aE(x)+

bE(x2). In general, the expectation of a function f(X) is
E[f(X)] =) flx) play)
E

Mean: ;1 = E(X)

Variance: 02 £ E[(X — ;)]
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Bernoulli r.v.s and the indicator function

Let E={0,1}, P(X =1)=X and P(X =0)=1— A\
We now introduce the set indicator variable. (Thisis a very

useful notation.)

L if w e A;
[4(w)

0 otherwise.
Using this convention, the probability distribution of a Bernoulli
random variable reads:

plx) = A (1 — yloro),
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Continuous r.v.s

A continuous r.v. is a map to a continuous space, X (w) :
() — R, under the usual measurability conditions. The cu-

mulative distribution function F(z) (cdf) is defined

by
XL

F(xr) & /p(-y) dy = P(X < x)
where p(x) denotes the probability density function

(pdf). For an infinitesimal measure dz in the real line, dis-

tributions F' and densities p are related as follows:

F(dx) =p(x)dr = P(X € dx).
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Continuous r.v.s
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Lecture 5:
Maximum likelihood
and Bayesian learning

Nando de Freitas

October 2009




Qutline

We revise maximum likelihood (ML) for a simple binary
model. We then introduce Bayesian learning for this simple
model.

The key difference between the two approaches is that the
frequentist view assumes there is one true model responsible
for the observations, while the Bayesian view assumes that
the model is a random variable with a certain prior
distribution. Computationally, the ML problem is one of
optimization, while Bayesian learning is one of integration.
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Frequentist learning

Frecuentist Learning assumes that there is a true model

(say a parametric model with parameters #;). The estimate

1s denoted 6. It can be found by maximising the likelihood:

0 = argmax p(xy.,|0)
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K/For identical and independent distributeh
2 —

(1.i.d.) data:
p(:-l?l:n.‘@) -

L(0) =logp(a1.,]0) =

\ /
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Maximum likelihood example

K/ -~ Let 1., with z; € {0, 1}, be i.i.d. Bernoulli: \
2z

plar,]0) = H plx;]0)
i=1

\_ /
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Maximum likelihood example

K/ With m 2 > @;, we have \

22—

L) =

Differentiating, we get

\_ /
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Bayesian learning

Given our prior knowledge p(€) and the data model p(-|7),
the Bayesian approach allows us to update our prior using
the new data x1., as follows:

pr1,]0)p(0)
p(Il:H )

p((i) ‘Il:n.) -

where p(#|xy,,) is the posterior distribution, p(xy.,|0)
is the likelihood and p(xy.,,) is the marginal likelihood

(evidence). Note

T)(iljlzia._) - /P(-’lfl:um)f)(@_)(m
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Bayesian supervised learning

/ N
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Bayesian model selection

For a particular model structure AM;, we have

B plain|0, M;)p(0|M;)
p(.’lj'lz.”‘ﬂf;)

p(O|xy.,, M;)
Models are selected according to their posterior:
P(M;|x1.,) o< Pay,|M;)p(M;) = P(J-L-)/;0(.1171;”_\(9, M) p(0|M;)d6
The ratio P(xy.,|M;)/P(xy.,|M;) is known as the Bayes

Factor.
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Example

Let 1., with x; € {0,1}, be i.i.d. Bernoulli: 2; ~ B(1,0)

n
p(.’.lfl:”‘@) = H[)(l;‘g) _ 9;”.(1 o 9)”__.,”_
i=1
Let us choose the following Beta prior distribution:

INEIINEE)

AN pha=1q o gyo-1

p(f) =

where I' denotes the Gamma-function. For the time
being, av and [ are fixed hyper-parameters. The

posterior distribution is proportional to:
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/%/i~ p(Olx) ox \

with normalisation constant

N Y,
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Conjugate analysis

Since the posterior is also Beta, we say that the Beta prior
1s conjugate with respect to the binomial likelihood. Con-

jugate priors lead to the same form of posterior.

Different hyper-parameters of the Beta Be(a, (3) distribution

give rise to different prior specifications:

7

-
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