Lecture 2: The Singular Value Decomposition

Outline

The Singular Value Decomposition (SVD) is a matrix factorization that has many applications, including:

- Information retrieval,
- Least-squares problems,
- Image processing,
- Dimensionality reduction.

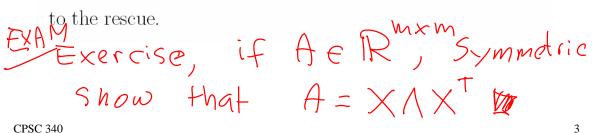
CPSC 340 2

Eigenvalue decomposition

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$. If we put the eigenvalues of \mathbf{A} into a diagonal matrix Λ and gather the eigenvectors into a matrix \mathbf{X} , then the eigenvalue decomposition of \mathbf{A} is given by

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

But what if **A** is not a square matrix? Then the SVD comes



CPSC 340

Formal definition of the SVD

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ the SVD of \mathbf{A} is a factorization of the form

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where <u>u</u> are the left singular vectors, σ are the singular values and v are the right singular vectors.

 $\Sigma \in \mathbb{R}^{n \times n}$ is diagonal with positive entries (singular values in the diagonal). $I = U^{T}(1)$

 $\mathbf{U} \in \mathbb{R}^{m \times n}$ with orthonormal columns.

 $\mathbf{V} \in \mathbb{R}^{n \times n}$ with orthonormal columns.

 $(\Rightarrow \mathbf{V} \text{ is orthogonal so } \mathbf{V}^{-1} = \mathbf{V}^T)$

 $\begin{cases} V^{T}V = I \\ VV = I \end{cases}$

Formal definition of the SVD

The equations relating the right singular values $\{\mathbf{v}_j\}$ and the left singular vectors $\{\mathbf{u}_j\}$ are

$$\mathbf{A}\mathbf{v}_j = \sigma_j \mathbf{u}_j \qquad j = 1, 2, \dots, n$$

$$AV = U\Sigma$$

$$\mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \sigma_1 & O \\ \sigma_2 & & & \\ O & & \ddots & & \\ O & & & \sigma_n \end{bmatrix}$$

CPSC 340

5

SVD properties

- 1. There is no assumption that $m \geq n$ or that **A** has full rank.
- 2. All diagonal elements of Σ are non-negative and in non-increasing order:

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$$

where $p = \min(m, n)$

SVD properties

Theorem 3 Every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has singular value decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

Furthermore, the singular values $\{\sigma_j\}$ are uniquely determined.

If **A** is square and $\sigma_i \neq \sigma_j$ for all $i \neq j$, the left singular vectors $\{\mathbf{u}_j\}$ and the right singular vectors $\{\mathbf{v}_j\}$ are uniquely determined to within a factor of ± 1 .

CPSC 340 7

SVD in terms of eigenvalues $(A^TA)^T = A^TA = Q \wedge Q^T$

Theorem 4 The nonzero singular values of \mathbf{A} are the (positive) square roots of the nonzero eigenvalues of $\mathbf{A}^T\mathbf{A}$ or $\mathbf{A}\mathbf{A}^T$ (these matrices have the same nonzero eigenvalues).

$$A^{T}A = (UZV^{T})^{T}UZV^{T}$$

$$= VZU^{T}(UZV^{T})$$

$$A^{T}A = VZ^{2}V^{T}$$

$$Z^{2}V^{T}$$

$$Z^{2}= \Lambda$$

$$22 \text{ AA}^{T} = U2V^{T} V2U^{T}$$

$$= U2^{2}U^{T}$$

$$3 \text{ A} = U2V^{T} \Rightarrow \text{ AV} = U2$$

$$AV2^{-1} = U$$

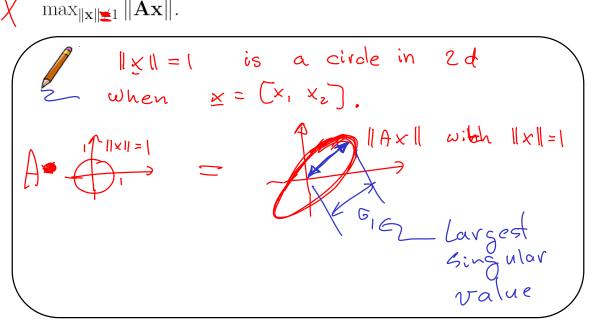
$$1 \text{ } 2^{2} = \Lambda, \text{ A}^{T} = V2^{2}V^{T}, Q = V$$

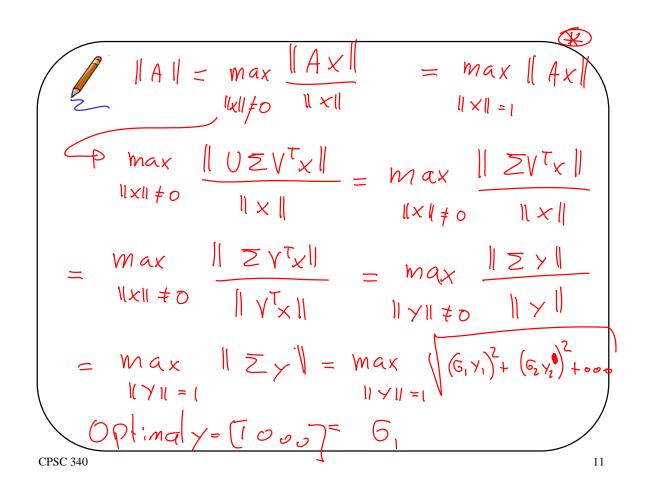
$$A = [1 2 3], \text{ what is } U, E, V$$

$$CPSC 340$$

Matrix norms

Theorem 5 $\|\mathbf{A}\|_2 = \sigma_1$, where $\|\mathbf{A}\|_2 = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{\|\mathbf{x}\| \geq 1} \|\mathbf{A}\mathbf{x}\|$.





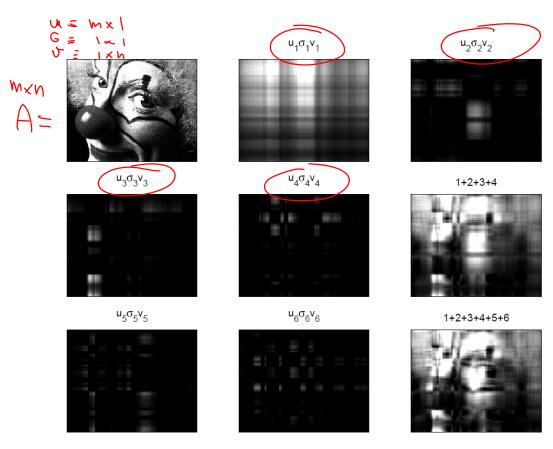
SVD in terms of rank 1 matrices

Theorem 6

$$\mathbf{A} = \sum_{j=1}^{r} \sigma_j \mathbf{u}_j \mathbf{v}_j^T$$

where r is the rank of A.

CPSC 340 12



CPSC 340

Energy interpretation and approximation error

What is so useful about this expansion is that the ν^{th} partial sum captures as much of the "energy" of \mathbf{A} as possible by a matrix of at most rank- ν . In this case, "energy" is defined by the 2-norm.

Theorem 7 For any ν with $0 \le \nu \le r$ define

$$\mathbf{A}_{\nu} = \sum_{j=1}^{\nu} \sigma_j \mathbf{u}_j \mathbf{v}_j^T$$

If $\nu = p = \min(m, n)$, define $\sigma_{\nu+1} = 0$. Then,

$$\|\mathbf{A} - \mathbf{A}_{\nu}\|_2 = \sigma_{\nu+1}$$