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Qutline

The Singular Value Decomposition (SVD) is a matrix factorization
that has many applications, including:

e Information retrieval,

o Least-squares problems,

* Image processing,

» Dimensionality reduction.
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Eigenvalue decomposition

L& A e Rmxm

)f we put the eigenvalues of A into a

diagonal matr and gather the eigenvectors into a matrix

X, then the eigenvalue decomposition of A is given by

But what if A is not a square matrix? Then the SVD comes

0, the rescue.
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Formal definition of the SVVD

Given A € R"™ . the SVD of A is a factorization of the

form
w0 xe\N
W

where u are the left singular vectors, o are the singular

values and v are the right singular vectors.

3 € R s diagonal with positive entries (singular values

in the diagonal).

0'U="T
V e R"" with orthonormal columns. \/T\/ — I
(= V is orthogonal so V7! = VT) NAY T =

U € R"™*" with orthonormal columns.
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Formal definition of the SVVD

The equations relating the right singular values {v;} and

the left singular vectors {u;} are

Av,=o0mu; j=12....n
AV =UX

o 0

a2
A[Vl Vz P V-;?.] — I:uj_ 1.].2 P uh::|

V% € HZ(A U € \Rw 0 oy
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SVD properties

1. There is no assumption that m > n or that A has full

rank.

2. All diagonal elements of 32 are non-negative and in non-

increasing order:
or>02>...>20,>0

where p = min (m.n)
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SVD properties

Theorem 3 Every matriz A € R"*" has singular value
decomposition A = UXV!

Furthermore, the singular values {o;} are uniquely de-
termined.

If A is square and o; # o for all i # j, the left singu-
lar vectors {u;} and the right singular vectors {v;} are

uniquely determined to within a factor of £1.
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SVD in terms of elgen

Theorem 4 The nonzero smju[m valueNof A are the
(positive) square roots of the nonzero cigenvalues o

or AAT (these matrices have the same nonzero eigenval-

ues).

N

//@ ATy = (U‘ZV>\)ZV A
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/Zi@ ApT= UV VZ OF \

= Uz2t0"
® a=0UTVT = AV-= U7

T AvzT = U
o TN AT, Qev

Lel A:E\ < 31}Wlflmt'c5()£\/
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Matrix norms
Theorem 5 ||Al|2 = o1, where [|A|l2 = maxx=g ﬁ;ﬁ =

>< max| (w1 || AX]|.

// It =1 is a civde w24

22— Whewn x = CX X j

YNME [Axl wlda lxl =)
A'é\—% —
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K/ 41 = wax “AXH = Max l(ﬁ\
| x| I =

l] /éo

muzv Sl e 12V
Bt v Ix{#0 x|
_ W1 ax I Z Yl — Wax _”Z/y_“,_

WFo )y Ty, lyito vl

= Wax I Zy-\\ = max (G\/B zyz>

Y = ( 1= J
\C)QL:MC{( >/= G o 00_7: 6] /
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SVD in terms of rank 1 matrices
Theorem 6

.
_ T
A = E o,V
j=1
where r s the rank of A.
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1+2+3+4
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Energy interpretation and approximation error

What is so useful about this expansion is that the v/

partial sum captures as much of the “energy” of A as
possible by a matriz of at most rank-v. In this case, “en-
ergy’ is defined by the 2-norm.

Theorem 7 For any v with 0 < v < r define

v/
. T
A, = E oV
Jj=1

If v = p =min(m,n), define 0,,1 = 0.
Then,
HA- - A-JfHQ = Op+1
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