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Qutline

The Singular Value Decomposition (SVD) is a matrix factorization
that has many applications, including:

e Information retrieval,

o Least-squares problems,

* Image processing,

» Dimensionality reduction.
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Eigenvalue decomposition

Let A € R"™ . If we put the eigenvalues of A into a

diagonal matrix A and gather the eigenvectors into a matrix

X, then the eigenvalue decomposition of A is given by

A =XAX 1

But what if A is not a square matrix? Then the SVD comes

to
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the rescue.
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Formal definition of the SVVD

Given A € R"*" the SVD of A is a factorization of the
form

A=UxVT

where u are the left singular vectors, o are the singular

values and v are the right singular vectors.

Y € R"" is diagonal with positive entries (singular values
in the diagonal).
U € R"*" with orthonormal columns.

V e R"" with orthonormal columns.

(= V is orthogonal so V-1 = VT)




Formal definition of the SVVD

The equations relating the right singular values {v,} and

the left singular vectors {u;} are

Av,=o0nn; j=12,....n
AV =UX
g1
02
A[Vl Vo ... VH_] :[ul U2 ... 1y
On
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SVD properties

1. There is no assumption that m > n or that A has full

rank.

2. All diagonal elements of 3 are non-negative and in non-

increasing order:
o1 >09>...20,>0

where p = min (m,n)
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SVD properties

Theorem 3 Every matriz A € R"*" has singular value
decomposition A = UXV!

Furthermore, the singular values {o;} are uniquely de-
termined.

If A is square and o; # o for all i # j, the left singu-
lar vectors {u;} and the right singular vectors {v;} are

uniquely determined to within a factor of £1.
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SVD In terms of eigenvalues

Theorem 4 The nonzero singular values of A are the
(positive) square roots of the nonzero cigenvalues of AT A
or AAT (these matrices have the same nonzero eigenval-

ues).
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Matrix norms

Theorem 5 ||Al|2 = o1, where [|A|l2 = maxx=g

max|g |+ ||AX]|.
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SVD in terms of rank 1 matrices
Theorem 6

.
A= E oV
j=1

where r is the rank of A.
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Energy interpretation and approximation error

What is so useful about this expansion is that the v/

partial sum captures as much of the “energy” of A as
possible by a matriz of at most rank-v. In this case, “en-
ergy’ is defined by the 2-norm.

Theorem 7 For any v with 0 < v < r define

v/
. T
A, = E oV
Jj=1

If v = p =min(m,n), define 0,,1 = 0.
Then,
HA- - A-JfHQ = Op+1
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