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Gradient

• Searching for a good solution can be interpreted as
looking for a minimum of some error (loss) function in
parameter space.

?

• The gradient is the vector of derivatives:

OE(θ1:d ) =

(
dE
dθ1

. . .
dE
dθd

)
The gradient vector is orthogonal to the contours. Hence,
to minimise the error, we follow the gradient (the direction
of steepest descent in error).
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Gradient for linear model

• Let’s go back to the linear model Y = Xθ with quadratic
error function E = (Y− Xθ)T (Y− Xθ). The gradient for
this model is:

?

• The gradient descent learning rule, at iteration t , is:

θ(t) = θ(t−1) + αOE

= θ(t−1) + αXT (Y− Xθ(t−1))

where α is a user-specified learning rate.
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Online learning

• In some situations, we might want to learn the parameters
by going over the data online:

θ(t) = θ(t−1) + αx (t)(y (t) − x (t)θ(t−1))

• This is the least mean squares algorithm. This learning
rule is a stochastic approximation technique also known
as the Robbins-Monro procedure. It’s stochastic because
the data is assumed to come from a stochastic process.

• If α decreases with rate 1/n, one can show that this
algorithm converges. If the θ vary “slowly” with time, it is
also possible to obtain convergence proofs with α set to a
small constant. There are many tricks, including
averaging, momentum and minibatches, to accelerate
convergence.
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Hessian of linear model

The Newton-Raphson algorithm uses the gradient learning
rule, with the inverse Hessian matrix in place of α:

θ(t) = θ(t−1) + H−1OE

H =
∂2E
∂θ2

?
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Very fast convergence!

?

Note that α is a scalar, while H is a large matrix. So there is a
trade-off between speed of convergence and storage.
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Multi-layer perceptrons

• Gradient descent
techniques allow us to
learn complex, nonlinear
supervised “neural
networks” known as
multi-layer percetrons.

• Mathematically, an MLP is
a nonlinear function
approximator:

ŷ = φj
(
φi
(
Xθj
)
θi
)

where φ(·) is the sigmoidal
(logistic) function:

φi
(
Xθj
)

=
1

1 + e−Xθj
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Loss functions for regression

Assume we are given the data {X1:n,Y1:n} and want to come
up with a nonlinear mapping Ŷ = f(X,θ), where θ is obtained
my minimising a loss function: quadratic
E = (Y− f(X,θ))T (Y− f(X,θ)) when doing regression. What is
the likelihood model?
?
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Loss functions for classification

?
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Backpropagation
The synaptic weights θ can be learned by following gradients:

θ(t+1) = θ(t) + α(Y− Ŷ)
∂Ŷ
∂θ(t)

where Ŷ = f(X,θ(t)). The output layer mapping for our
example is given by:

ŷ = θ1 + θ2o11 + θ3o12

and consequently, the derivatives with respect to the weights
are given by:

?

∂ŷ
∂θ1

=

∂ŷ
∂θ2

=

∂ŷ
∂θ3

=
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Backpropagation

The hidden layer mapping for the top neuron is:

o11 =
1

1 + exp(−u11)
where u11 = θ4 + θ5x1 + θ6x2

Note that
∂o11

∂u11
= o11(1− o11)

?

The derivatives with respect to the weights are:

∂ŷ
∂θ4

=
∂ŷ
∂o11

∂o11

∂u11

∂u11

∂θ4
=

∂ŷ
∂θ5

=

∂ŷ
∂θ6

=
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Backpropagation

The derivatives with respect to the weights of the other hidden
layer neuron can be calculated following the same procedure.
Once we have all the derivatives, we can use either steepest
descent or Newton-Raphson to update the weights.
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