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General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are
to be done on your own.
Homework grades will be based not only on getting the “correct answer,” but
also on good writing style and clear presentation of your solution. It is your
responsibility to make sure that the graders can easily follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for
explaining why you got stuck on a promising line of attack. More importantly, you will get
valuable feedback that will help you learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you
used to help you solve the problem (e.g. books from the library). This won’t affect your
grade but is important as academic honesty.
When dealing with python exercises, please attach a printout with all your code
and show your results clearly.



1. (Image compression)

Convert a photo of yours to .png format. Then load it with python and compute its SVD
compression as explained in the lecture notes and in class. Choose a number of eigenval-
ues (truncation threshold) and EXPLAIN your choice below. Hand in the explanation, the
original image and the compressed image.

Python hint: (From the Matplotlib FAQ.) You can make Matplotlib write a
figure directly to disk without a window popup by setting an image backend.
This is particularly useful if you’re generating figures using a script and you don’t
want to block the Python mainloop by calling show().

import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig(’myfig’)

(i) Explanation:

(ii) What is the compression factor?

(iii) What is the compression error using the definition of the norm of a matrix introduced
in class?



2. (Latent Semantic Indexing with the SVD)

In this exercise, you will program a semantic search engine. The corpus of webpages is
available at

http://www.cs.ubc.ca/~nando/340-2009/assignments.php

You should download the data in pickle format (a useful format for files in python). The
corpus consists of 100 webpages (urls). Each webpage has a few tags and their respective
frequency of occurrence. The following code snippet loads the data:

from pylab import *
from scipy import *
import cPickle as pickle
from math import acos, degrees

def loadData():
"""
INPUT: loads the file lsiData.pkl
OUTPUT: - data: dict[URL] -> list of tuples(tag,frequency)

data.keys()[i] returns the i-th URL.
data.values()[i] returns the tuples(tag,frequency) for the i-th URL.

"""
data = pickle.load(open("lsiData.pkl"))
return data

Note that all the data is stored as a dictionary. You should familiarize yourself with these
powerful data structures. To get you started, the following function extracts the list of tags
and websites from the dictionary:

def extractData(data):
"""
INPUT: data
OUTPUT: - urls: list of urls

- tags: alphabetically sorted list of tags
"""
urls = data.keys() # List of urls.
tags = set() # Initialize set of tags.
for tagfreq in data.values():

tags.update(t for t,_ in tagfreq) # add new tags to set of tags.
tags = sorted(list(tag)) # convert the set of tags to a list of tags,

# sorted in alphabetical order.
return urls, tags

This is one possible sketch of the functions involved. You don’t have to follow this model,
especially if you’re familiar with Python’s classes.



def generateCounts(data, tags, urls):
"""
INPUT: - data

- tags: alphabetically sorted list of tags
OUTPUT: - A = co-occurrence matrix.
"""
???
return A

def truncatedSVD(A,k):
"""
INPUT: - A = co-occurrence matrix.

- k = truncation point. Number of components.
OUTPUT: truncated SVD U_k, Sigma_k and V_k.
"""
???
return Uk, Sk, Vk

def query(q, Uk, Sk, Vtk, tags, urls):
"""
e.g. r = query(array([’ai’,’cs’]), Uk, Sk, Vtk, tags, urls)
"""
???
return result

def buildEngine(k):
"""
e.g. Uk, Sk, Vtk, tag, url = buildEngine(2)
"""
data = loadData()
???
return Uk, Sk, Vk, tags, urls

(i) Generate the term-frequency matrix for this dataset. As done in question 1, plot this
matrix as an image. Remember to normalize the co-occurrence matrix.

A term-frequency matrix is a matrix where the columns correspond to documents and
the rows correspond to terms. The (i, j)th entry is the number of occurrences of term j
in document i.



(ii) Building the search engine: Compute the truncated SVD of the term-frequency
matrix and truncate to an acceptable level. Here, again, you need to choose a reasonable
truncation level and explain your choice. Plot the compressed matrix as an image. You must
hand in both images. Explanation:

(iii) Querying the search engine: Implement a program that takes as input one or more
tags and returns the closest URLs to the query. Do this by using the truncated SVD of the
previous part to project the query and compute the angle between the query and all the
compressed webpages. Hand in all your code.

Python hint: You might want to look into some or all of the following
Python/NumPy/SciPy functions: enumerate, resize, reshape, degrees, norm,
eye, acos. Just type help(func) for details.

(iv) What are the top 5 webpages retrieved by the query ”australia”?

(v)What are the top 5 pages retrieved by the composite query ”python animals”?



3. (Probability revision)

(i) Let P (HIV = 1) = 1/500 be the probability of contracting HIV by having unprotected
sex. If one has unprotected sex twice, what is the probability of contracting HIV? What if
one has unprotected sex 500 times?



(ii) Let A ∈ Rk×n, b ∈ Rk be given matrices, and X ∈ Rn be a random variable with mean
E(X) = µx ∈ Rn and covariance cov(X) = ΣX ∈ Rn×n. We define a new random variable

Y = AX + b

If X ∼ N(µx,Σx), show that Y ∼ N(µy,Σy) by deriving expressions for µy and Σy in terms of
the sufficient statistics (µx,Σx) of X and the parameters of the linear transformation (A, b).



(iii) Let x1 ∼ N(µ1, σ
2
1) and x2 ∼ N(µ2, σ

2
2) be two independent random variables, derive

an expression for p(x1, x2). Explain the zeros in the covariance matrix of the joint distribution
of x1 and x2.

(iv) A random variable X with a uniform distribution between 0 to 1 is written as X ∼
U[0,1](x). Draw pictures of the pdf and cdf of this random variable in the one-dimensional
case. Draw a picture of the pdf of X when it is two-dimensional.



(v) Let X ∼ N(µ,Σ) and let the eigenvalue decomposition of the covariance be Σ = UΛUT .
Prove that X ∼ µ+ UΛ1/2N(0, I). Provide a geometric interpretation of the effect of U and
Λ in 2D. How does this relate to PCA?

(vi) For the set indicator variable IA(ω), complete the following:

E[IA(ω)] =

4. (PCA) As explained in class in the context of digit images (the images of 2’s), you’ll have to
implement a PCA projection of, say, 10 images to a single 2D display. Use any images you
might like to display on the PCA layout.



Python hint: Make sure you understand how slices and reshaping work on two-
dimensional arrays. For example, if the following is unclear, look at it step-by-step
until it makes sense (zeros() and arange() are NumPy functions to create and
initialize arrays with predefined values):

X = zeros((4,4))
X[1:3,1:3] = (arange(4)*10+5).reshape(2,-1)


