Lecture 9:
Unsupervised learning

Nando de Freitas

September 2008

Qutline

In the absence of labels y, there are many useful patterns and
structures that we can still find in the data. For example, we might be
interested in:

» Novelty detection (e.g. detecting new strands of HIV).

« Data association (e.g. machine translation, multi-target tracking,
object recognition from annotated images).

» Clustering (grouping similar items together).

In this lecture, we will introduce two of the most popular algorithms
in machine learning and data mining: K-means and EM.
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K-means algorithm

1. Initialisation: Choose k& = 2 means (1.5 at random.

2. Compute distances: For ¢ = 1,....k and ¢ =

. )
1,...,n compute the distance ||z; — p.||".

3. Assign data to nearest mean: To keep track of

assignments, introduce the indicator variable z;, such

that
1 if ¢ = argmin ||a; — po]|?
H(‘(Z.") - <
0 otherwise
That is, Ix(z;) = 1 if observation x; is closer to cluster

2. I.(z;) end up being the entries of an n x A matrix

with only one 1 per row and many zeros.
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K-means algorithm (continued)

4. Update means:

He = Zi;l H"(z}')lll’,’_
| Z:;l H(-(Z;)

5. Repeat: Go back to step 2. until the means and as-

signments stop changing.
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Hard Vs Soft assignments

The problem with this algorithm is that the assignments are
hard. Something is either this or that. Sometimes, however,
we would like to say that something is this with probability

0.7 or that with probability 0).3.

We would like to find not only the means, but also the vari-
ances of each cluster and the probabilities of belonging to

each cluster.

CPSC 340
Clustering
Desired output
Input Hard labeling Soft labeling
1 1

K=3 is the number of clusters, here chosen by hand
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Probabilistic approach

For the 2 clusters, we approximate the probability of each

data point with a weighted combination of Gaussians
2 ‘ 2
plrilpe, 01.9) = p(z; = DN (2|1, 070)+p(2 = 2N (x| o, 03)

Here, the unknown parameters are (1.0, (sz) and the cluster
probabilities p(z; = 1) and p(z; = 2), which we rewrite as
p(1) and p(2) for brevity. Note that p(1)+p(2) = 1 to ensure

that we still have a probability.
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Probabilistic approach in 2D
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Probabilistic approach in 1D
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Probabilistic approach

In general, we have

rl’\'

plr;l6) = Zp(r?)A/"(:zf,v_ﬂ(., o)

c=1

.) " .
where 6 = (p11.., 07..) summarises the model parameters and

plc) = p(z = ¢). Clearly, Zle plc) = 1.
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The EM algorithm

In this section, we use intuition to introduce the expectation-
maximisation (EM). If we know I[.(z;), then it is easy to
compute (., a2) by maximum likelihood. We repeat this
for each cluster. The problem is that we have a chicken and
ego situation. To know the cluster memberships, we need

the parameters of the Gaussians. To know the parameters,

we need the cluster memberships.

One solution is to approximate I.(z;) with our expectation of
it given the data and our current estimate of the parameters

6. That is, we replace I.(z;) with
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CPSC 340 1




The EM algorithm

Once we know &;.. we can compute the Gaussian mixture

par ameters:

Z{f 1&(-37!
( Zi;l &fir'
T Zj;l gz‘w(il-’; - [I(.)(.il.',- — 'u.(,)"
h >
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The EM algorithm

The EM for Gaussians is as follows:
1. Initialise.

2. E Step: At iteration £, compute the expectation of the
indicators for each 7 and ¢
A (1) (1) (1)
) pe) DN (2 \;15 ) ¥\ )

Sy () ON (|, )

and normalise it (divide by sum over ¢).
3. M Step: Update the parameters p(c)\"), .. 257
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“angel fish”  ““Kitty””  “‘yellow fish”’
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Translation and data association
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“sun sea sky”

“sun sea sky”
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