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Linear supervised learning
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Qutline

Linear regression is a supervised learning task. It is of great interest
because:

» Many real processes can be approximated with linear models.
* Linear regression appears as part of larger problems.

* It can be solved analytically.

* It illustrates many of the approaches to machine learning.

CPSC 340




L_east squares

Given the data {x1.,, y1.,}, with z; € R? and y; € R, we

want to fit a hyper-plane that maps = to v.
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Learning and prediction with least squares
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_east squares

Mathematically, the linear model is expressed as follows:

E]z = 8{) + 217;_);9_};

d
Jj=1
d

We let x;9 = 1 to obtain 7; = Z xiif;

j=0

In matrix form, this expression is Y = X
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|_east squares with multiple outputs

[f we have several outputs y; € R“ our linear regression

expression becomes:
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Optimization approach

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

o) = (Y — X)L (Y — X0)

//

22—

o

CPSC 340

Optimization approach

We will need the following results from matrix differenti-
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Optimization approach

/%/iThese are the normal equations. The solution (e)

mate) 1s:

0 =

The corresponding predictions are

where H is the “hat” matrix.
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Geometric approach
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Probability approach: Univariate Gaussian distribution
The probability density function of a Gaussian distribution

is given by
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where 1 is the mean or center of mass and ¢~ is the variance.

T ™
X ~N(p,07)
/

\_ /

CPSC 340 11

Multivariate Gaussian distribution

Let x € R". The pdf of an n-dimensional Gaussian is given

by

_ 1 1, Ty-1
o) S —glr—p)t BT (r—p)
P1) = —F=7 ‘W’“"Q\Z-\lf'@ﬁ 2

1 E(r)
M= =
[l E(z,)
011" O1n
Y= =E[(X — p)(X — p)"]
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Multivariate Gaussian distribution

We can interpret each component of x, for example, as
a feature of an image such as colour or texture. The term
2(x—p)"E7 (w—p) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and p.
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Maximum likelihood approach

If our errors are Gaussian distributed, we can use the model
Y = X6+ N(0,0%])

Note that the mean of Y is X@ and that its variance is
o2]. So we can equivalently write this expression using the

probability density of ¥ given X', ¢ and o

oy —n/2 b v oy T vy
pY|X.0,0) = (2mo?) 7/ ema X
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Maximum likelihood
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Maximum likelihood

The maximum likelihood (ML) estimate of € is obtained by
taking the derivative of the log-likelihood, log p(Y'| X, 0, o).
The idea of maximum likelihood learning is to maximise the
likelihood of seeing some data Y by modifying the parame-

ters (6, 7).
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Maximum likelihood

K/ The ML estimate of 6 is: \
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Maximum likelihood

/ Proceeding in the same way, the ML estimate of o 1&\
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