Acknowledgement

Many thanks to the following people for making available some of the slides, figures and videos used in these slides:

• Kevin Murphy (UBC)
• Kevin Leyton-Brown (UBC)
• Tom Griffiths (Berkeley)
• Josh Tenenbaum (MIT)
• Kobus Barnard (Arizona)
• All my awesome students at UBC
Introduction to machine learning

- What is machine learning?
- How is machine learning related to other fields?
- Machine learning applications
- Types of learning
 - Supervised learning
 - regression
 - classification
 - Unsupervised learning
 - clustering
 - data association
 - abnormality detection
 - dimensionality reduction
 - structure learning
 - Semi-supervised learning
 - Active learning
 - Reinforcement learning and control of partially observed Markov decision processes.

What is machine learning?

```quote
"Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the task or tasks drawn from the same population more efficiently and more effectively the next time."
-- Herbert Simon
```
What is machine learning?

Machine learning is concerned with the process of constructing abstractions of the real world (concepts, functions, relations and ways of acting) automatically from observations.

Learning concepts and words

Can you pick out the tufas?

Source: Josh Tenenbaum
Why “Learn”?

Learning is used when:

- Human expertise is absent (navigating on Mars)

- Humans are unable to explain their expertise (speech recognition, vision, language)

- Solution changes in time (routing on a computer network)

- Solution needs to be adapted to particular cases (user biometrics)

- The problem size is too vast for our limited reasoning capabilities (calculating webpage ranks)

Introduction to machine learning

- What is machine learning?
- How is machine learning related to other fields?
- Machine learning applications
- Types of learning
 - Supervised learning
 - regression
 - classification
 - Unsupervised learning
 - clustering
 - data association
 - abnormality detection
 - dimensionality reduction
 - structure learning
 - Semi-supervised learning
 - Active learning
 - Reinforcement learning and control of partially observed Markov decision processes.
How is machine learning related to other fields?

Learning and information theory

Data compression and transmission over a noisy channel provide some insight into the process of learning.

(i) Which compressions capture the essence of the image?
(ii) Which one is best to recognize the same subject in a different photo?
Learning and Bayesian inference

\[p(h \mid d) = \frac{\sum_{h' \in H} p(d \mid h') p(h') p(h)}{\sum_{h' \in H} p(d \mid h') p(h')} \]

Likelihood

Posterior

Prior of “sheep” class

Speech recognition

\[P(\text{words} \mid \text{sound}) \propto P(\text{sound} \mid \text{words}) P(\text{words}) \]

Final beliefs

Likelihood of data

Language model

eg mixture of Gaussians

eg Markov model

Hidden Markov Model (HMM)

“Recognize speech”

“Wreck a nice beach”
Vision as inverse graphics

\[
p(\text{world} \mid \text{image}) \propto p(\text{image} \mid \text{world}) \ p(\text{world})
\]

- **Final beliefs**
- **Likelihood of data**
- **Initial beliefs**

Learning, decision theory and control

Utilitarian view: We need models to make the right decisions under uncertainty. Inference and decision making are intertwined.

Learned population model

\[
\begin{aligned}
p(x = \text{healthy}) &= 0.9 \\
p(x = \text{cancer}) &= 0.1
\end{aligned}
\]

Learned reward model

We choose the action that maximizes the expected utility:

\[
EU(a) = \sum_{x \in \{\text{healthy}, \text{cancer}\}} r(x, a) \ p(x)
\]

- \(EU(a = \text{treatment}) = -27.2\)
- \(EU(a = \text{no treatment}) = -10\)
People as Bayesian reasoners

Learning and expected utility are related to game theory

- Learning opponents’ policies
- Language acquisition, evolution and processing
Introduction to machine learning

- What is machine learning?
- How is machine learning related to other fields?
- Machine learning applications
- Types of learning
 - Supervised learning
 - regression
 - classification
 - Unsupervised learning
 - clustering
 - data association
 - abnormality detection
 - dimensionality reduction
 - structure learning
 - Semi-supervised learning
 - Active learning
 - Reinforcement learning and control of partially observed Markov decision processes.

Chess

- In 1996 and 1997, Gary Kasparov, the world chess grandmaster played two tournaments against Deep Blue, a program written by researchers at IBM
Deep Blue’s Results in the first tournament:
won 1 game, lost 3 and tied 1
 • first time a reigning world champion lost to a computer
 • although Kasparov didn’t see it that way…

Deep Blue’s Results in the second tournament:
 – second tournament: won 3 games, lost 2, tied 1

Source: CNN
Learning is essential to building autonomous robots

Source: RoboCup web site

Autonomous robots and self-diagnosis

Unknown internal discrete state

Unknown continuous signals

Sensor readings
Simultaneous localization and map learning

Robots that learn to drive

Source: Sebastian Thrun
Tracking and activity recognition

Data mining and games
Tracking robots

Animation and control

Source: Aaron Hertzmann
Learning agents that play poker

• In full 10-player games Poki is better than a typical low-limit casino player and wins consistently; however, not as good as most experts
• New programs being developed for the 2-player game are quite a bit better, and we believe they will very soon surpass all human players

Source: The University of Alberta GAMES Group

Learning web-bots

Source: Swedish Institute of Computer Science
Natural language understanding

- \(P(\text{meaning} \mid \text{words}) \propto P(\text{words} \mid \text{meaning}) \cdot P(\text{meaning}) \)
- We do not yet know good ways to represent "meaning" (knowledge representation problem)
- Most current approaches involve "shallow parsing", where the meaning of a sentence can be represented by fields in a database, eg
 - "Microsoft acquired AOL for $1M yesterday"
 - "Yahoo failed to avoid a hostile takeover from Google"

<table>
<thead>
<tr>
<th>Buyer</th>
<th>Buyee</th>
<th>When</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>AOL</td>
<td>Yesterday</td>
<td>$1M</td>
</tr>
<tr>
<td>Google</td>
<td>Yahoo</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Structure learning: Phylogenetic Tree Reconstruction (Nir Friedman et al.)

Input: Biological sequences

- Human: CGTTGC...
- Chimp: CCTAGG...
- Orang: CGAACG...

Output: a phylogeny

Learning probabilistic graphical models
Learning to fly

Introduction to machine learning

- What is machine learning?
- How is machine learning related to other fields?
- Machine learning applications
- Types of learning
 - Supervised learning
 - classification
 - regression
 - Unsupervised learning
 - clustering
 - data association
 - abnormality detection
 - dimensionality reduction
 - structure learning
 - Semi-supervised learning
 - Active learning
 - Reinforcement learning and control of partially observed Markov decision processes.

Source: Andrew Ng
Supervised learning as Optimization

Training: For data x, teacher provides labels y. We optimize to infer the most probable model given the training data $D=(x,y)$ and prior preferences

$$\hat{\theta}_{MAP} = \arg \max_{\theta} \log P(D|\theta) + \log P(\theta)$$

Testing: We predict the label of a new point

$$P(y_*|x_*, D) \approx P(y_*|x_*, \hat{\theta}_{MAP})$$

Supervised learning as Bayesian inference

Training: For data x, teacher provides labels y. We apply Bayes rule to infer the complete model given the training data $D=(x,y)$ and prior

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Testing: We predict the label of a new point

$$P(y_*|x_*, D) = \int P(y_*|x_*, \theta)P(\theta|D)d\theta$$
Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

Discriminant: IF income > θ_1 AND savings > θ_2

THEN low-risk ELSE high-risk

Input data is two dimensional, output is binary \{0,1\}

Classification of DNA arrays
Training set:

<table>
<thead>
<tr>
<th>Color</th>
<th>Shape</th>
<th>Size</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Square</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Red</td>
<td>Ellipse</td>
<td>Small</td>
<td>Yes</td>
</tr>
<tr>
<td>Red</td>
<td>Ellipse</td>
<td>Large</td>
<td>No</td>
</tr>
</tbody>
</table>

Test set

<table>
<thead>
<tr>
<th>Color</th>
<th>Shape</th>
<th>Size</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Crescent</td>
<td>Small</td>
<td>?</td>
</tr>
<tr>
<td>Yellow</td>
<td>Ring</td>
<td>Small</td>
<td>?</td>
</tr>
</tbody>
</table>

Hypothesis (decision tree)
What's the right hypothesis?
Noisy/ mcaplabeled data

Overfitting

• Memorizes irrelevant details of training set
Underfitting

- Ignores essential details of training set

Now we’re given a larger data set
Now more complex hypothesis is ok

Which linear hypothesis is better?

margin
No free lunch theorem

• Unless you know something about the distribution of problems your learning algorithm will encounter, **any hypothesis that agrees with all your data is as good as any other**. Learning is an ill-posed problem.
• You have to make *assumptions* about the underlying future.
• These assumptions are implicit in the choice of hypothesis space (and maybe the algorithm).
• Hence learning is inductive, not deductive.

Building nonlinear classifiers: finding the right feature transformations or kernels

\[
\begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} x^2 \\ \sqrt{2}xy \\ y^2 \end{pmatrix}
\]

Kernel implicitly maps from 2D to 3D, making problem linearly separable
Example: Handwritten digit recognition for postal codes

Example: Face Recognition

Training examples of a person

Test images

AT&T Laboratories, Cambridge UK
http://www.uk.research.att.com/facedatabase.html
Linear regression

- Example: Price of a used car
- x: car attributes
 - y: price
 - $y = g(x, \theta)$
 - $g()$ model,
 - $\theta = (w, w_0)$ parameters (slope and intercept)

Regression is like classification except the output is a real-valued scalar

Nonlinear regression

Useful for:
- Prediction
- Control
- Compression
- Outlier detection
- Knowledge extraction
Introduction to machine learning

• What is machine learning?
• How is machine learning related to other fields?
• Machine learning applications

• Types of learning
 – Supervised learning
 • classification
 • regression
 – Unsupervised learning
 • clustering
 • data association
 • abnormality detection
 • dimensionality reduction
 • structure learning
 – Semi-supervised learning
 – Active learning
 – Reinforcement learning and control of partially observed Markov decision processes.

Clustering

Desired output

Hard labeling

Soft labeling

Input

K=3 is the number of clusters, here chosen by hand
Clustering

\[\theta's \rightarrow \text{group} \rightarrow Y_1, Y_2, \ldots, Y_N \]

“angel fish” “kitty” “yellow fish”
Discovering nonlinear manifolds
Query: “river tiger”
(Even though the words never occur together)

Retrieved items:
Query: “water sky cloud”

Retrieved items:
Touring: Online computer game

Query: Game state
Retrieved: Action
Input poem

The Waste Land (excerpt)
T S Eliot
For Ezra Pound,
il miglior fabbro.
I. The Burial of the Dead
April is the cruellest month, breeding
Lilacs out of the dead land, mixing
Memory and desire, stirring
Dull roots with spring rain,
Winter kept us warm, covering
Earth in forgetful snow, feeding
A little life with dried tubers.
Summer surprised us, coming over the Starnbergersee
With a shower of rain; we stopped in the colonnade
And went on in sunlight, into the Hofgarten,
And drank coffee, and talked for an hour.
Bin gar keine Russin, stam'm aus Litauen, echt deutsch.
And when we were children, staying at the arch-duce's,
My cousin's, he took me out on a sled,
And I was frightened. He said, Marie,
Marie, hold on tight. And down we went.
In the mountains, there you feel free.
I read, much of the night, and go south in winter.
…

Closest song match

One Hundred Years (excerpt)
The Cure
It doesn't matter if we all die
Ambition in the back of a black car
In a high building there is so much to do
Going home time
A story on the radio
Something small falls out of your mouth
And we laugh
A prayer for something better
Please love me
Meet my mother
But the fear takes hold
Have we got everything?
She struggles to get away
The pain
And the creeping feeling
A little black haired girl
Waiting for Saturday
The death of her father pushing her
Pushing her white face into the mirror
Aching inside me
…

• Music

Auto-illustration

Text Passage (Moby Dick)

“The large importance attached to the harpooneer's vocation is evinced by the fact, that originally in the old Dutch Fishery, two centuries and more ago, the command of a whale-ship …”

Query

large importance attached fact
old dutch century more command
whale ship was person was
divided officer word means fat
cutter time made days was
general vessel whale hunting
concern british title old dutch ...
Auto-annotation

Associated Words
KUSATSU SERIES STATION TOKAIDO
GOJUSANTSUGI PRINT HIROSHIGE

Predicted Words (rank order)
tokaido print hiroshige object artifact series
ordering gojusantsugi station facility arrangement
minakuchi

Translation and data association

“sun sea sky”
Introduction to machine learning

- What is machine learning?
- How is machine learning related to other fields?
- Machine learning applications
- Types of learning
 - Supervised learning
 - classification
 - regression
 - Unsupervised learning
 - clustering
 - data association
 - abnormality detection
 - dimensionality reduction
 - structure learning
 - Semi-supervised learning
 - Active learning
 - Reinforcement learning and control of partially observed Markov decision processes.
Semi-supervised learning

Word Polysemy is a common problem in IR system.

Image Retrieval systems mainly use linguistic features (e.g. words) and not visual cues.
Introduction to machine learning

• What is machine learning?
• How is machine learning related to other fields?
• Machine learning applications
• Types of learning
 – Supervised learning
 • classification
 • regression
 – Unsupervised learning
 • clustering
 • data association
 • abnormality detection
 • dimensionality reduction
 • structure learning
 – Semi-supervised learning
 – Active learning
 – Reinforcement learning and control of partially observed Markov decision processes.
Active learning

- **Active learning** is a principled way of integrating decision theory with traditional statistical methods for learning models from data.

- In active learning, the machine can query the environment. That is, it can ask questions.

- Decision theory leads to optimal strategies for choosing when and what questions to ask in order to gather the best possible data. **Good data is often better than a lot of data.**

Active learning and surveillance

In network with *thousands* of cameras, which camera views should be presented to the human operator?

“So many cameras here I’m thinking of joining the actor’s union.”
Active learning and sensor networks

How do we optimally choose among a subset of sensors in order to obtain the best understanding of the world while minimizing resource expenditure (power, bandwidth, distractions)?

Nonlinear regression

Useful for predicting:
- House prices
- Drug dosages
- Chemical processes
- Spatial variables
- Output of control action
Active learning example

Interactive robots
Experimental design

Choose experiments (covariates x in this case) so as to learn the most about the model parameters (amplitude, frequency and phase).

It also applies to model selection and validation of theories.

Intelligent user interfaces
Other Active Learning Problems

- Which sites should a crawler visit?
- Which tests to conduct in active diagnosis?
- What is a good animated walk?
- Interactive video search.
- Relevance feedback systems.
- Optimizing spatial and temporal allocation of sensors. How do we adapt to target maneuvers?
- Learning opponent’s strategies.

Introduction to machine learning

- What is machine learning?
- How is machine learning related to other fields?
- Machine learning applications
- Types of learning
 - Supervised learning
 - classification
 - regression
 - Unsupervised learning
 - clustering
 - data association
 - abnormality detection
 - dimensionality reduction
 - structure learning
 - Semi-supervised learning
 - Active learning
 - Reinforcement learning and control of partially observed Markov decision processes.
Partially Observed Markov Decision Processes (POMDPs)

During learning: we can estimate the transition $p(x_t|x_{t-1},a_{t-1})$ and reward $r(a,x)$ models by, say observing a human expert.

During planning: we learn the best sequence of actions (policy) so as to maximize the discounted sum of expected rewards.

Impressive applications (e.g. Ng et al)
Monte Carlo Planning: Problem statement

- The robot, with a rough prior map, has to accomplish a series of tasks in an environment (e.g. reaching End).
- It chooses a parameterized path $\pi^*(\theta)$ so as to learn the most about its own pose and the location of navigation landmarks (posterior map), while accomplishing tasks.

POMDP Formulation

- State (robot and landmark locations) x_t
- Observations y_t
- Actions (PID regulation about policy path) $u_t \sim \pi(\theta)$
- Transition model $p(x_t|x_{t-1}, u_t)$
- Observation model $p(y_t|x_t)$
- Cost function: Average Mean Square Error

$$C_{\pi AMSE}^\pi = \mathbb{E}_{p(x_T,y_{1:T} | \pi)} \left[(\hat{x}_T - x_T)(\hat{x}_T - x_T)^T \right]$$

$$\hat{x} = \mathbb{E}_{p(x_T | y_{1:T}, \pi)} [x_t]$$
Target-directed attention

Assume, e.g. you have prior over where to find **people** and **sky**

Use Bayesian theory and maximum expected utility principle to combine this prior with bottom-up saliency maps and object likelihood models to obtain a more informative posterior.

Qualitative results
The games industry, rich in sophisticated large-scale simulators, is a great environment for the design and study of automatic decision making systems.

Hierarchical policy example

- **High-level** model-based learning for deciding when to navigate, park, pickup and dropoff passengers.

- **Mid-level** active path learning for navigating a topological map.

- **Low-level** active policy optimizer to learn control of continuous non-linear vehicle dynamics.
Low-Level: Trajectory following

TORCS: 3D game engine that implements complex vehicle dynamics complete with manual and automatic transmission, engine, clutch, tire, and suspension models.

Active Path Finding in Middle Level

- Mid-level *Navigate* policy generates sequence of waypoints on a topological map to navigate from a location to a destination. $V(\theta)$ value function represents the path length from the current node, to the target.
Hierarchical systems apply to many robot tasks – key to build large systems

We used TORCS: A 3D game engine that implements complex vehicle dynamics complete with manual and automatic transmission, engine, clutch, tire, and suspension models.