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Lecture 5 - Linear Supervised Learn- Given the data {21, y1.n}, with z; € R? and y; € R, we

. want to fit a hyper-plane that maps z to y.
in g YPEr-p P Yy

OBJECTIVE: Linear regression is a supervised learn-

ing task. It is of great interest because:

e Many real processes can be approximated with linear

models.
e Linear regression appears as part of larger problems.
e [t can be solved analytically.

e [t illustrates many of the approaches to machine learn-

ing.
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Mathematically, the linear model is expressed as follows:

d
Z//\i = 9() + Z asiﬂj
j=1

We let ;) = 1 to obtain

d
Yi = E 50,
J=0

In matrix form, this expression is

Y = X0
@1 T * Tid )
:/y\n Tno **° Tnd ed
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If we have several outputs y; € R our linear regression

expression becomes:

*

We will present several approaches for computing 6.

< OPTIMIZATION APPROACH

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

CH) =Y - X0 (Y - X0)
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*
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We will need the following results from matrix differenti-

. p T
ation: % = AT and % =2AT9

oC

o0

These are the normal equations. The solution (esti-
mate) is:

-
The corresponding predictions are

Y = HY =

where H is the “hat” matrix.
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<& GEOMETRIC APPROACH

Xy —Y)

< PROBABILISTIC APPROACH

Univariate Gaussian Distribution

The probability density function of a Gaussian distribution
is given by
2

p(w) = e 32"

where g is the mean or center of mass and o is the variance.

Our short notation for Gaussian variables is X ~ N (u, 0%).
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Multivariate Gaussian Distribution

Let x € R™. The pdf of an n-dimensional Gaussian is given

by

pl) = 27rn/21|2|1/26%(Iﬂ)TZl(xﬂ)
where
I E(z1)
o= =
fin E(z,)
and
011" 01n
= | =B - -]
Onl: " Onn

with 0'7;]' = ]E[XZ — ,U,l)(X] - /Lj)T].

We can interpret each component of x, for example, as
a feature of an image such as colour or texture. The term
$(@—p)"S 7 (w—p) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and p.
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Maximum Likelihood
If our errors are Gaussian distributed, we can use the model
Y = X0+ N(0,0%])

Note that the mean of Y is X6 and that its variance is
oI. So we can equivalently write this expression using the

probability density of ¥ given X, § and o
p(Y|X,0,0) = (2m0?) " e 2 X=X

The maximum likelihood (ML) estimate of 6 is obtained by
taking the derivative of the log-likelihood, logp(Y| X, 6, o).
The idea of maximum likelihood learning is to maximise the
likelihood of seeing some data Y by modifying the parame-
ters (6, 0).
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The ML estimate of 0 is:

*
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Proceeding in the same way, the ML estimate of o is:

*
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Lecture 6 - Ridge Regression

OBJECTIVE: Here we learn a cost function for linear
supervised learning that is more stable than the one in the
previous lecture. We also introduce the very important no-

tion of regularization.

All the answers so far are of the form
o= (xX"X)'xTy

They require the inversion of X X7 This can lead to prob-
lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:
0= (X"X+61)"'XTY

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

CO) =Y - X' (Y — X0)+ %709
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* Proof:

It is useful to visualise the quadratic optimisation function

and the constraint region.
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*

That is, we are solving the following constrained opti-
misation problem:

, i {(Y - X0)"(Y - x0)}
Large values of 6 are penalised. We are shrinking 0 towards
zero. This can be used to carry out feature weighting.
An input z;, weighted by a small §; will have less

influence on the ouptut y;.
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Spectral View of LS and Ridge Regression

Again, let X € R"*? be factored as

d
X =UsV" = won!,
i=1

where we have assumed that the rank of X is d.

* The least squares prediction is:

d
YLSZ E UIUITY
i=1
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* Likewise, for ridge regression we have:

a2
Yidge = E ———uulY
riage — 0_72 + 62 (e}
i= 4

The filter factor

o2

J e S
f o2 + 42

penalises small values of o2 (they go to zero at a faster rate).
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*

Also, by increasing 62 we are penalising the weights:

*
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Small eigenvectors tend to be wobbly. The Ridge filter fac-
tor f; gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).
The smoothness parameter 82 is often estimated by cross-
validation or Bayesian hierarchical methods.

Minimax and cross-validation

Cross-validation is a widely used technique for choosing 4.

Here's an example:

*




