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Lecture 5 - Linear Supervised Learn-

ing

OBJECTIVE: Linear regression is a supervised learn-

ing task. It is of great interest because:

• Many real processes can be approximated with linear

models.

• Linear regression appears as part of larger problems.

• It can be solved analytically.

• It illustrates many of the approaches to machine learn-

ing.
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Given the data {x1:n, y1:n}, with xi ∈ R
d and yi ∈ R, we

want to fit a hyper-plane that maps x to y.

�
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Mathematically, the linear model is expressed as follows:

ŷi = θ0 +

d∑
j=1

xijθj

We let xi,0 = 1 to obtain

ŷi =

d∑
j=0

xijθj

In matrix form, this expression is

Ŷ = Xθ




ŷ1

...

ŷn


 =




x10 · · · x1d

... ... ...

xn0 · · · xnd







θ0

...

θd
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If we have several outputs yi ∈ R
c, our linear regression

expression becomes:

�

We will present several approaches for computing θ.

� OPTIMIZATION APPROACH

Our aim is to mininimise the quadratic cost between the

output labels and the model predictions

C(θ) = (Y − Xθ)T (Y − Xθ)
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�
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We will need the following results from matrix differenti-

ation: ∂Aθ
∂θ = AT and ∂θT Aθ

∂θ = 2ATθ

�
∂C

∂θ
=

These are the normal equations. The solution (esti-

mate) is:

θ̂ =

The corresponding predictions are

Ŷ = HY =

where H is the “hat” matrix.
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� GEOMETRIC APPROACH

�

XT (Y − Ŷ ) =
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� PROBABILISTIC APPROACH

Univariate Gaussian Distribution

The probability density function of a Gaussian distribution

is given by

p(x) = 1√
2πσ2e

− 1
2σ2 (x−µ)2

.

where µ is the mean or center of mass and σ2 is the variance.

�

Our short notation for Gaussian variables is X ∼ N (µ, σ2).
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Multivariate Gaussian Distribution

Let x ∈ R
n. The pdf of an n-dimensional Gaussian is given

by

p(x) =
1

2πn/2|Σ|1/2e
−1

2(x−µ)T Σ−1(x−µ)

where

µ =




µ1

:

µn


 =




E(x1)

:

E(xn)




and

Σ =




σ11 · · ·σ1n

· · ·
σn1 · · ·σnn


 = E[(X − µ)(X − µ)T ]

with σij = E[Xi − µi)(Xj − µj)
T ].

We can interpret each component of x, for example, as

a feature of an image such as colour or texture. The term

1
2(x−µ)TΣ−1(x−µ) is called the Mahalanobis distance.

Conceptually, it measures the distance between x and µ.
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Maximum Likelihood

If our errors are Gaussian distributed, we can use the model

Y = Xθ + N (0, σ2I)

Note that the mean of Y is Xθ and that its variance is

σ2I . So we can equivalently write this expression using the

probability density of Y given X , θ and σ:

p(Y |X, θ, σ) =
(
2πσ2

)−n/2
e
− 1

2σ2 (Y −Xθ)T (Y −Xθ)

The maximum likelihood (ML) estimate of θ is obtained by

taking the derivative of the log-likelihood, log p(Y |X, θ, σ).

The idea of maximum likelihood learning is to maximise the

likelihood of seeing some data Y by modifying the parame-

ters (θ, σ).
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The ML estimate of θ is:

�

CPSC-340: Machine Learning and Data Mining 64

Proceeding in the same way, the ML estimate of σ is:

�
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Lecture 6 - Ridge Regression

OBJECTIVE: Here we learn a cost function for linear

supervised learning that is more stable than the one in the

previous lecture. We also introduce the very important no-

tion of regularization.

All the answers so far are of the form

θ̂ = (XTX)−1XTY

They require the inversion of XXT . This can lead to prob-

lems if the system of equations is poorly conditioned. A

solution is to add a small element to the diagonal:

θ̂ = (XTX + δ2Id)
−1XTY

This is the ridge regression estimate. It is the solution to the

following regularised quadratic cost function

C(θ) = (Y − Xθ)T (Y − Xθ) + δ2θTθ
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� Proof:

It is useful to visualise the quadratic optimisation function

and the constraint region.
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�

That is, we are solving the following constrained opti-

misation problem:

min
θ : θT θ ≤ t

{
(Y − Xθ)T (Y − Xθ)

}

Large values of θ are penalised. We are shrinking θ towards

zero. This can be used to carry out feature weighting.

An input xi,d weighted by a small θd will have less

influence on the ouptut yi.
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Spectral View of LS and Ridge Regression

Again, let X ∈ R
n×d be factored as

X = UΣV T =

d∑
i=1

uiσiv
T
i ,

where we have assumed that the rank of X is d.

� The least squares prediction is:

ŶLS =

d∑
i=1

uiu
T
i Y



CPSC-340: Machine Learning and Data Mining 69

� Likewise, for ridge regression we have:

Ŷridge =

d∑
i=1

σ2
i

σ2
i + δ2

uiu
T
i Y

The filter factor

fi =
σ2

i

σ2
i + δ2

penalises small values of σ2 (they go to zero at a faster rate).
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�

Also, by increasing δ2 we are penalising the weights:

�
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Small eigenvectors tend to be wobbly. The Ridge filter fac-

tor fi gets rid of the wobbly eigenvectors. Therefore, the

predictions tend to be more stable (smooth, regularised).

The smoothness parameter δ2 is often estimated by cross-

validation or Bayesian hierarchical methods.

Minimax and cross-validation

Cross-validation is a widely used technique for choosing δ.

Here’s an example:

�


