Lecture 2b - Linear Algebra Revision

OBJECTIVE: In this lecture, we will revise all the definitions and linear algebra facts that we need in order to understand the learning algorithms in later sections of the course.

♦ FAMILIAR DEFINITIONS

Let \mathbf{x} be an n-dimensional column vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Let **A** be an $m \times n$ matrix (m rows, n columns)

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

If $\mathbf{b} = \mathbf{A}\mathbf{x}$, then $\mathbf{b} \in \mathbb{R}^m$ where each component of \mathbf{b} ,

$$b_i = \sum_{j=1}^n a_{ij} x_j$$
 $i = 1, 2, \dots, m$.

We can view $\mathbf{x} \to \mathbf{A}\mathbf{x}$ as a linear map. i.e., for any (vectors) $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and any (scalar) $\alpha \in \mathbb{R}$,

$$\mathbf{A}(\mathbf{x} + \mathbf{y}) = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{y}$$
$$\mathbf{A}(\alpha \mathbf{x}) = \alpha \mathbf{A}\mathbf{x}$$

Question: Which side is more expensive to compute?

♦ MATRIX-VECTOR MULTIPLICATION

Let $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix}$ i.e., $\mathbf{a}_j \in \mathbb{R}^m$ is the j^{th} column of \mathbf{A} . Then, $\mathbf{b} = \mathbf{A}\mathbf{x} = \sum_{j=1}^n x_j \mathbf{a}_j$ i.e., \mathbf{b} is a linear combination of the columns of \mathbf{A} .

$$\begin{bmatrix} \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$= x_1 \begin{bmatrix} \mathbf{a}_1 \end{bmatrix} + x_2 \begin{bmatrix} \mathbf{a}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \mathbf{a}_n \end{bmatrix}$$

Note 1 This is nothing but a change of viewpoint (and notation).

Instead of viewing $\mathbf{A}\mathbf{x} = \mathbf{b}$ as "A acting on \mathbf{x} to give \mathbf{b} ", we view as " \mathbf{x} acting on \mathbf{A} to produce \mathbf{b} ".

	,	
*		
1		

♦ DETERMINANTS, INDEPENDENCE AND RANK

♦ EIGEN-DECOMPOSITIONS

The intuition is to find a scalar λ that has the same effect as ${\bf A}$ on ${\bf x}$.

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

*	

* Example:

⋆ Example:

\triangle SI	PECTRAI	PRO	PERTIES
\sim \circ r	TECH DAL		'E E L I I E S

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be full rank, then

(i) \mathbf{A}^{-1} has eigenvalues $1/\lambda_1, \dots, 1/\lambda_m$.

⋆ Proof:

(ii) $\mathbf{A} - k\mathbf{I}$ has eigenvalues $\lambda_1 - k, \dots, \lambda_m - k$.

⋆ Proof:

(v) Trace and determinant:

(iii) \mathbf{A}^n has eigenvalues $\lambda_1^n, \dots, \lambda_m^n$.

★ Proof:			

(iv) Spectral Mapping theorem:

Theorem 1 The matrix $k_n \mathbf{A}^n + k_{n-1} \mathbf{A}^{n-1} + \ldots + k_1 \mathbf{A} + k_0 \mathbf{I}$ has eigenvalues $k_n \lambda_j^n + k_{n-1} \lambda_j^{n-1} + \ldots + k_1 \lambda_j^1 + k_0$ for $j = 1 \ldots m$.

The proof is question 1 of the homework.

*			

♦ TRANSPOSE

Definition 1 The transpose $\mathbf{A}^{\mathbf{T}}$ of an $m \times n$ matrix \mathbf{A} is an $n \times m$ matrix where the (i,j) entry of $\mathbf{A}^{\mathbf{T}}$ is the (j,i) entry of \mathbf{A}

 \leftrightarrow interchange the rows with the columns

e.g., If
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
, then $\mathbf{A}^{\mathbf{T}} =$

If $\mathbf{A} = \mathbf{A^T}$ (so \mathbf{A} has to be square!) then \mathbf{A} is said to be symmetric.

♦ SPD MATRICES

Definition 2 A matrix **A** is symmetric positive definite (SPD) if it is symmetric and

$$\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0, \quad \forall \mathbf{x} \neq \mathbf{0}.$$

★ Proof:			

Theorem 2 If **A** is SPD, its eigenvalues are positive.

♦ INNER PRODUCT

Definition 3 Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Then, the inner product of \mathbf{x} and \mathbf{y} is a <u>scalar</u>

$$\mathbf{x}^{\mathbf{T}}\mathbf{y} = \sum_{i=1}^{m} x_i y_i$$

The (Euclidean) length of a vector \mathbf{x} is written as $\|\mathbf{x}\|$ and can be defined as the square root of the inner product of the vector with itself

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} = \left(\sum_{i=1}^{m} x_i^2\right)^{\frac{1}{2}}$$

Also, if the angle between vectors \mathbf{x} and \mathbf{y} is α , we have

$$\cos \alpha = \frac{\mathbf{x}^{\mathrm{T}} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

♦ ORTHOGONAL MATRICES

A square matrix $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is orthogonal if

$$\mathbf{Q}^{\mathrm{T}} = \mathbf{Q}^{-1}.$$

i.e.,
$$\mathbf{Q}^{\mathbf{T}}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{\mathbf{T}} = \mathbf{I}$$

$$\begin{bmatrix} \mathbf{q}_1^T \\ \mathbf{q}_2^T \\ \vdots \\ \mathbf{q}_m^T \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_m \end{bmatrix} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

NOTATION

$$\mathbf{q}_{i}^{T}\mathbf{q}_{j} = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \quad \text{Kronecker delta}$$

Lecture 3 - The Singular Value Decomposition (SVD)

OBJECTIVE: The SVD is a matrix factorization that has many applications: e.g., information retrieval, least-squares problems, image processing.

♦ EIGENVALUE DECOMPOSITION

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$. If we put the eigenvalues of \mathbf{A} into a diagonal matrix $\mathbf{\Lambda}$ and gather the eigenvectors into a matrix \mathbf{X} , then the eigenvalue decomposition of \mathbf{A} is given by

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}.$$

But what if \mathbf{A} is not a square matrix? Then the SVD comes to the rescue.

♦ FORMAL DEFINITION OF THE SVD

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, the SVD of \mathbf{A} is a factorization of the form

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where \mathbf{u} are the left singular vectors, σ are the singular values and \mathbf{v} are the right singular vectors.

 $\Sigma \in \mathbb{R}^{n \times n}$ is diagonal with positive entries (singular values in the diagonal).

 $\mathbf{U} \in \mathbb{R}^{m \times n}$ with orthonormal columns.

 $\mathbf{V} \in \mathbb{R}^{n \times n}$ with orthonormal columns.

 $(\Rightarrow \mathbf{V} \text{ is orthogonal so } \mathbf{V}^{-1} = \mathbf{V}^T)$

The equations relating the right singular values $\{\mathbf{v}_j\}$ and the left singular vectors $\{\mathbf{u}_j\}$ are

$$\mathbf{A}\mathbf{v}_j = \sigma_j \mathbf{u}_j \qquad j = 1, 2, \dots, n$$

i.e.,

or $AV = U\Sigma$.

*

- 1. There is no assumption that $m \geq n$ or that **A** has full rank.
- 2. All diagonal elements of Σ are non-negative and in non-increasing order:

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$$

where $p = \min(m, n)$

Theorem 3 Every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has singular value decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

Furthermore, the singular values $\{\sigma_j\}$ are uniquely determined.

If **A** is square and $\sigma_i \neq \sigma_j$ for all $i \neq j$, the left singular vectors $\{\mathbf{u}_j\}$ and the right singular vectors $\{\mathbf{v}_j\}$ are uniquely determined to within a factor of ± 1 .

♦ EIGENVALUE DECOMPOSITION

Theorem 4 The nonzero singular values of \mathbf{A} are the (positive) square roots of the nonzero eigenvalues of $\mathbf{A}^T \mathbf{A}$ or $\mathbf{A}\mathbf{A}^T$ (these matrices have the same nonzero eigenvalues).

★ Proof:

♦ LOW-RANK APPROXIMATIONS

Theorem 5 $\|\mathbf{A}\|_2 = \sigma_1$, where $\|\mathbf{A}\|_2 = \max_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{\|\mathbf{x}\| \neq 1} \|\mathbf{A}\mathbf{x}\|$.

★ Proof:

Another way to understand the SVD is to consider how a matrix may be represented by a sum of rank-one matrices.

Theorem 6

$$\mathbf{A} = \sum_{j=1}^r \sigma_j \mathbf{u}_j \mathbf{v}_j^T$$

where r is the rank of A.

⋆ Proof:			

What is so useful about this expansion is that the ν^{th} partial sum captures as much of the "energy" of $\bf A$ as possible by a matrix of at most rank- ν . In this case, "energy" is defined by the 2-norm.

Theorem 7 For any ν with $0 \le \nu \le r$ define

$$\mathbf{A}_{\nu} = \sum_{j=1}^{\nu} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}$$

If $\nu = p = \min(m, n)$, define $\sigma_{\nu+1} = 0$. Then,

$$\|\mathbf{A} - \mathbf{A}_{\nu}\|_2 = \sigma_{\nu+1}$$

Lecture 4 - Fun with the SVD

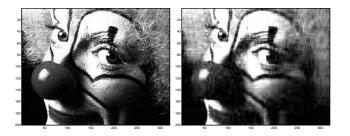
OBJECTIVE: Applications of the SVD to image compression, dimensionality reduction, visualization, information retrieval and latent semantic analysis.

♦ IMAGE COMPRESSION EXAMPLE

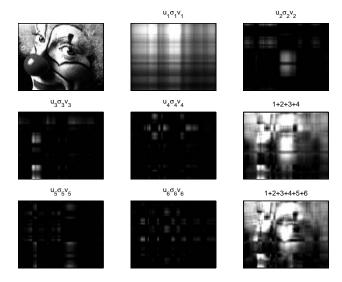
```
load clown.mat;
figure(1)
colormap('gray')
image(A);
[U,S,V] = svd(A);
figure(2)
k = 20;
colormap('gray')
image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)');
```

The code loads a clown image into a 200×320 array **A**;

displays the image in one figure; performs a singular value decomposition on \mathbf{A} ; and displays the image obtained from a rank-20 SVD approximation of \mathbf{A} in another figure. Results are displayed below:



The original storage requirements for **A** are $200 \cdot 320 = 64,000$, whereas the compressed representation requires $(200+300+1) \cdot 20 \approx 10,000$ storage locations.



Smaller eigenvectors capture high frequency variations (small brush-strokes).

♦ TEXT RETRIEVAL - LSI

The SVD can be used to cluster documents and carry out information retrieval by using concepts as opposed to word-matching. This enables us to surmount the problems of synonymy (car,auto) and polysemy (money bank, river bank). The data is available in a term-frequency matrix

*			

If we truncate the approximation to the k-largest singular values, we have

$$\mathbf{A} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

So

$$\mathbf{V}_k^T = \mathbf{\Sigma}_k^{-1} \mathbf{U}_k^T \mathbf{A}$$

*

In English, \mathbf{A} is projected to a lower-dimensional space spanned by the k singular vectors \mathbf{U}_k (eigenvectors of $\mathbf{A}\mathbf{A}^T$). To carry out **retrieval**, a **query** $\mathbf{q} \in \mathbb{R}^n$ is first projected to the low-dimensional space:

$$\widehat{\mathbf{q}}_k = \mathbf{\Sigma}_k^{-1} \mathbf{U}_k^T \mathbf{q}$$

And then we measure the angle between $\widehat{\mathbf{q}}_k$ and the \mathbf{v}_k .

*	

♦ PRINCIPAL COMPONENT ANALYSIS (PCA)

The columns of $\mathbf{U}\Sigma$ are called the **principal components** of \mathbf{A} . We can project high-dimensional data to these components in order to be able to visualize it. This idea is also useful for cleaning data as discussed in the previous text retrieval example.

★	
, ,	

For example, we can take several 16×16 images of the digit 2 and project them to 2D. The images can be written as vectors with 256 entries. We then from the matrix $\mathbf{A} \in \mathbb{R}^{n \times 256}$, carry out the SVD and truncate it to k = 2. Then the components $\mathbf{U}_k \mathbf{\Sigma}_k$ are 2 vectors with n data entries. We can plot these 2D points on the screen to visualize the data.

*

