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Lecture 2b - Linear Algebra Revi-
sion

OBJECTIVE: In this lecture, we will revise all the de-
finitions and linear algebra facts that we need in order to
understand the learning algorithms in later sections of the

course.
< FAMILIAR DEFINITIONS

Let x be an n-dimensional column vector

T

)
X = eR"

Iy
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Let A be an m x n matrix (m rows, n columns)

ap a2 ... QA
A — asr A2 ... Q9p c Ran
Am1 Qm2 .. Amn

If b = Ax, then b € R™ where each component of b,
n
bi:Zaijx]- i:1,27...,m.

7=1

We can view x — Ax as a linear map. i.e., for any (vectors)

x,y € R" and any (scalar) a € R,

Ax+y) = Ax+ Ay
Alax) = aAx

Question: Which side is more expensive to compute?
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<& MATRIX-VECTOR MULTIPLICATION

Let A = [31 a ... an] ie, a; € R™ is the j"
column of A. Then, b = Ax = 22:1 zja; ie, b is a

linear combination of the columns of A.

Ty
T2
[b] = [al a, ... an} _

Tn

- xl[al]+x2[32}+...+xn[an]

Note 1 This is nothing but a change of viewpoint (and
notation,).
Instead of viewing Ax = b as “A acting on x to give

b7, we view as “x acting on A to produce b”.
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<& DETERMINANTS, INDEPENDENCE AND RANK

*
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<& EIGEN-DECOMPOSITIONS
The intuition is to find a scalar A that has the same effect
as A on x.

Ax = )x
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* Example:
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* Example:
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<& SPECTRAL PROPERTIES

Let A € R™*™ be full rank, then
(i) A7! has eigenvalues 1/Ay, ..., 1/ \.

* Proof:

(ii) A — kI has eigenvalues Ay — k, ..., A, — k.

* Proof:
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(iii) A™ has eigenvalues A}, ... A%,

* Proof:

(iv) Spectral Mapping theorem:

Theorem 1 The matriz k, A" +k, A" 4. . +kA+kl
has eigenvalues kn)\;? + kn_l)\?’l + ...+ kl)\; + ko for

j=1...m.

The proof is question 1 of the homework.
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(v) Trace and determinant:

*
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<& TRANSPOSE

Definition 1 The transpose AT of an m x n matriz A
is an n X m matriz where the (i,j) entry of AT is the
(3,i) entry of A

> interchange the rows with the columns

*

12
eg, IfA=1 3 4 [, then AT =
56

If A= AT (so A has to be square!) then A is said to be

symmetric.

<& SPD MATRICES

Definition 2 A matriz A is symmetric positive definite

(SPD) if it is symmetric and

xTAx >0, Vx #£ 0.
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Theorem 2 If A is SPD, its eigenvalues are positive.

* Proof:
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< INNER PRODUCT

Definition 3 Let x,y € R™. Then, the inner product of

X and 'y 1s a scalar

x"y =z,
i=1
The (Euclidean) length of a vector x is written as ||x||

and can be defined as the square root of the inner product

of the vector with itself

1
m 2
I = v (z )
=1

Also, if the angle between vectors x and 'y is a, we

have

_ xy
Ix|l[lyll

COS &
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<& ORTHOGONAL MATRICES

A square matrix Q € R™™ is orthogonal if
Q'=q".

ie., QTQ=QQT =1

|:q1 q ... qm:| =

NOTATION

L ifi=j & is called the

aq=d;=4
0 ifi+#j Kronecker delta
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Lecture 3 - The Singular Value
Decomposition (SVD)

OBJECTIVE: The SVD is a matrix factorization that has
many applications: e.g., information retrieval, least-squares

problems, image processing.

<& EIGENVALUE DECOMPOSITION

Let A € R™™.  If we put the eigenvalues of A into a
diagonal matrix A and gather the eigenvectors into a matrix

X, then the eigenvalue decomposition of A is given by
A =XAX

But what if A is not a square matrix? Then the SVD comes

to the rescue.
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<& FORMAL DEFINITION OF THE SVD

Given A € R"™ " the SVD of A is a factorization of the
form

A=UxVT

where u are the left singular vectors, ¢ are the singular

values and v are the right singular vectors.

Y € R™" is diagonal with positive entries (singular values
in the diagonal).

U € R™" with orthonormal columns.

V € R™" with orthonormal columns.

(= V is orthogonal so V7! = VT)

The equations relating the right singular values {v;} and

the left singular vectors {u;} are

AVjIO']'llj j:1,2,...,7’L
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Le.,

A[vl Vo ... an

:[u1 us ...

or AV = UX.

01

02

On
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1. There is no assumption that m > n or that A has full

rank.

2. All diagonal elements of ¥ are non-negative and in non-

increasing order:

o> 20>

where p = min (m, n)

Theorem 3 Every matriz A € R™" has singular value
decomposition A = UXVT

Furthermore, the singular values {o;} are uniquely de-
termined.

If A is square and o; # o; for all i # j, the left singu-
lar vectors {u;} and the right singular vectors {v;} are

uniquely determined to within a factor of 1.
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< EIGENVALUE DECOMPOSITION

Theorem 4 The nonzero singular values of A are the
(positive) square roots of the nonzero eigenvalues of AT A
or AAT (these matrices have the same nonzero eigenval-

ues).

* Proof:
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<& LOW-RANK APPROXIMATIONS

Theorem 5 [|A||y = 01, where ||All; = maxyz Hﬁ(’ﬁ” =

maxx 1 | Ax].

* Proof:
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Another way to understand the SVD is to consider how a

matrix may be represented by a sum of rank-one matrices.

Theorem 6
T
_ A
A= E oju;v;
j=1

where v is the rank of A.

* Proof:
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What is so useful about this expansion is that the v
partial sum captures as much of the “emnergy” of A as
possible by a matriz of at most rank-v. In this case, “en-

ergy” is defined by the 2-norm.

Theorem 7 For any v with 0 < v < r define

v
_ —
A, = E oju;v;
j=1

If v = p =min(m,n), define 5,41 = 0.
Then,
A —Ayl2=0,11
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Lecture 4 - Fun with the SVD

OBJECTIVE: Applications of the SVD to image com-
pression, dimensionality reduction, visualization, informa-

tion retrieval and latent semantic analysis.

< IMAGE COMPRESSION EXAMPLE

load clown.mat;
figure(1)
colormap(’gray’)

image (A);

[U,S,V] = svd(A);
figure(2)

k = 20;
colormap(’gray’)

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);

The code loads a clown image into a 200 x 320 array A;
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displays the image in one figure; performs a singular value
decomposition on A; and displays the image obtained from a
rank-20 SVD approximation of A in another figure. Results

are displayed below:

The original storage requirements for A are 200 - 320 =
64, 000, whereas the compressed representation requires (2004

300 + 1) - 20 & 10, 000 storage locations.
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Uy 142+3+4
.
-
N i
-
"
[

1+2+3+4+5+6

"

Smaller eigenvectors capture high frequency variations (small

brush-strokes).
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<& TEXT RETRIEVAL - LSI

The SVD can be used to cluster documents and carry
out information retrieval by using concepts as opposed to
word-matching. This enables us to surmount the problems
of synonymy (car,auto) and polysemy (money bank, river

bank). The data is available in a term-frequency matrix
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If we truncate the approximation to the k-largest singular In English, A is projected to a lower-dimensional space
values, we have spanned by the k singular vectors Uy, (eigenvectors of AAT).
A= Uk,Esz To carry out retrieval, a query q € R" is first projected
Yo to the low-dimensional space:
T —171T
Vi =%'UfA

ar =%, 'Ulq

And then we measure the angle between q, and the vy
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<& PRINCIPAL COMPONENT ANALYSIS (PCA)

The columns of UX are called the principal compo-
nents of A. We can project high-dimensional data to these
components in order to be able to visualize it. This idea is
also useful for cleaning data as discussed in the previous text

retrieval example.

*
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For example, we can take several 16 x 16 images of the
digit 2 and project them to 2D. The images can be written
as vectors with 256 entries. We then from the matrix A €
R0 carry out the SVD and truncate it to k = 2. Then
the components U3, are 2 vectors with n data entries. We

can plot these 2D points on the screen to visualize the data.
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