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Lecture 7 - Constrained Linear Re-

gression

OBJECTIVE: In this lecture, we will learn that it is pos-

sible to come up with different cost functions that are more

agressive than ridge in selecting the right input features. We

will introduce the lasso algorithm and quadratic program-

ming.

Textbook: Pages 64–65.

So far, we have dealt with quadratic (L2) cost functions:

C(θ) = (Y −Xθ)T (Y −Xθ) + δ2‖θ‖22

where ‖θ‖2 ,
(∑

i θ
2
i

)1/2
. So we are solving

min
θ : θT θ ≤ t

{
(Y −Xθ)T (Y −Xθ)

}
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We could also try other constraint norms such as the L1:

C(θ) = (Y −Xθ)T (Y −Xθ) + δ2‖θ‖1

where ‖θ‖1 =
∑

i |θi|, thus yielding the optimisation prob-

lem:

min
θ :

∑
i
|θi| ≤ t

{
(Y −Xθ)T (Y −Xθ)

}

What should dictate our choice of norm? Let us look at a

2D case.
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? Effect on θ:
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While we can solve the quadratic constraint problem ana-

lytically (ridge regression), we need to carry out quadratic

programming so solve the L1 (LASSO) constraint prob-

lem.

Lasso as Quadratic Programming

The quadratic programming problem is cast in the following

general form:

min
θ : Aθ ≤ t

{
1

2
θTHθ + fTθ

}

In Matlab, one can find the θ that solve the quadratic pro-

gramming problem by typing theta = quadprog(H,f,A,t).

Let us now look at how to convert the lasso problem to

generic quadratic programming.

CPSC-340: Machine Learning and Data Mining 62

?


