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Lecture 3 - The Singular Value

Decomposition (SVD)

OBJECTIVE: The SVD is a matrix factorization that has

many applications: e.g., information retrieval, least-squares

problems, image processing.

Textbook: Pages 487–490.

3 EIGENVALUE DECOMPOSITION

Let A ∈ R
m×m. If we put the eigenvalues of A into a

diagonal matrix Λ and gather the eigenvectors into a matrix

X, then the eigenvalue decomposition of A is given by

A = XΛX−1.

But what if A is not a square matrix? Then the SVD comes

to the rescue.
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3 FORMAL DEFINITION OF THE SVD

Given A ∈ R
m×n, the SVD of A is a factorization of the

form

A = UΣVT

where u are the left singular vectors, σ are the singular

values and v are the right singular vectors.

Σ ∈ R
n×n is diagonal with positive entries (singular values

in the diagonal).

U ∈ R
m×n with orthonormal columns.

V ∈ R
n×n with orthonormal columns.

(⇒ V is orthogonal so V−1 = VT )

The equations relating the right singular values {vj} and

the left singular vectors {uj} are

Avj = σjuj j = 1, 2, . . . , n
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i.e.,

A
[

v1 v2 . . . vn

]

=
[

u1 u2 . . . un

]




σ1

σ2

. . .

σn




or AV = UΣ.

?
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1. There is no assumption that m ≥ n or that A has full

rank.

2. All diagonal elements of Σ are non-negative and in non-

increasing order:

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

where p = min (m, n)

Theorem 1 Every matrix A ∈ R
m×n has singular value

decomposition A = UΣVT

Furthermore, the singular values {σj} are uniquely de-

termined.

If A is square and σi 6= σj for all i 6= j, the left singu-

lar vectors {uj} and the right singular vectors {vj} are

uniquely determined to within a factor of ±1.
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3 EIGENVALUE DECOMPOSITION

Theorem 2 The nonzero singular values of A are the

(positive) square roots of the nonzero eigenvalues of ATA

or AAT (these matrices have the same nonzero eigenval-

ues).

? Proof:
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3 LOW-RANK APPROXIMATIONS

Theorem 3 ‖A‖2 = σ1, where ‖A‖2 = maxx6=0
‖Ax‖
‖x‖ =

max‖x‖6=1 ‖Ax‖.

? Proof:
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Another way to understand the SVD is to consider how a

matrix may be represented by a sum of rank-one matrices.

Theorem 4

A =
r∑

j=1

σjujv
T
j

where r is the rank of A.

? Proof:
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What is so useful about this expansion is that the ν th

partial sum captures as much of the “energy” of A as

possible by a matrix of at most rank-ν. In this case, “en-

ergy” is defined by the 2-norm.

Theorem 5 For any ν with 0 ≤ ν ≤ r define

Aν =

ν∑

j=1

σjujv
T
j

If ν = p = min(m, n), define σν+1 = 0.

Then,

‖A−Aν‖2 = σν+1
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Lecture 4 - Fun with the SVD

OBJECTIVE: Applications of the SVD to image com-

pression, dimensionality reduction, visualization, informa-

tion retrieval and latent semantic analysis.

Textbook: Pages 487–490.

3 IMAGE COMPRESSION EXAMPLE

load clown.mat;

figure(1)

colormap(’gray’)

image(A);

[U,S,V] = svd(A);

figure(2)

k = 20;

colormap(’gray’)

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);

CPSC-340: Machine Learning and Data Mining 31

The code loads a clown image into a 200 × 320 array A;

displays the image in one figure; performs a singular value

decomposition on A; and displays the image obtained from a

rank-20 SVD approximation of A in another figure. Results

are displayed below:
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The original storage requirements for A are 200 · 320 =

64, 000, whereas the compressed representation requires (200+

300 + 1) · 20 ≈ 10, 000 storage locations.



CPSC-340: Machine Learning and Data Mining 32

u
1
σ

1
v

1
u

2
σ

2
v

2

u
3
σ

3
v

3
u

4
σ

4
v

4 1+2+3+4

u
5
σ

5
v

5
u

6
σ

6
v

6 1+2+3+4+5+6

Smaller eigenvectors capture high frequency variations (small

brush-strokes).
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3 TEXT RETRIEVAL - LSI

The SVD can be used to cluster documents and carry

out information retrieval by using concepts as opposed to

word-matching. This enables us to surmount the problems

of synonymy (car,auto) and polysemy (money bank, river

bank). The data is available in a term-frequency matrix

?
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If we truncate the approximation to the k-largest singular

values, we have

A = UkΣkV
T
k

So

VT
k = Σ−1

k UT
k A

?
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In English, A is projected to a lower-dimensional space

spanned by the k singular vectors Uk (eigenvectors of AAT ).

To carry out retrieval, a query q ∈ R
n is first projected

to the low-dimensional space:

q̂k = Σ−1
k UT

k q

And then we measure the angle between q̂k and the vk.

?
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3 PRINCIPAL COMPONENT ANALYSIS (PCA)

The columns of UΣ are called the principal compo-

nents of A. We can project high-dimensional data to these

components in order to be able to visualize it. This idea is

also useful for cleaning data as discussed in the previous text

retrieval example.

?
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For example, we can take several 16 × 16 images of the

digit 2 and project them to 2D. The images can be written

as vectors with 256 entries. We then from the matrix A ∈

R
n×256, carry out the SVD and truncate it to k = 2. Then

the components UkΣk are 2 vectors with n data entries. We

can plot these 2D points on the screen to visualize the data.

?
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