CPSC-340: Machine Learning and Data Mining 22

Lecture 3 - The Singular Value
Decomposition (SVD)

OBJECTIVE: The SVD is a matrix factorization that has
many applications: e.g., information retrieval, least-squares

problems, image processing.

Textbook: Pages 487-490.

< EIGENVALUE DECOMPOSITION

Let A € R™ If we put the eigenvalues of A into a
diagonal matrix A and gather the eigenvectors into a matrix

X, then the eigenvalue decomposition of A is given by
A =XAX1

But what if A is not a square matrix? Then the SVD comes

to the rescue.
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<& FORMAL DEFINITION OF THE SVD

Given A € R"™*" the SVD of A is a factorization of the
form

A =UxVT’

where u are the left singular vectors, o are the singular

values and v are the right singular vectors.

3 € R™™ is diagonal with positive entries (singular values
in the diagonal).

U € R"™*" with orthonormal columns.

V € R™" with orthonormal columns.

(= V is orthogonal so V™! = VT)

The equations relating the right singular values {v;} and

the left singular vectors {u;} are

Av; =oju, i=12,....n
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ie.,

A[vl vy ... an

= |:ll1 U ...

or AV = UX.

01

%]
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1. There is no assumption that m > n or that A has full

rank.

2. All diagonal elements of 33 are non-negative and in non-

increasing order:
01 >092>...20

where p = min (m, n)

Theorem 1 Every matriz A € R™" has singular value
decomposition A = UXVT

Furthermore, the singular values {o;} are uniquely de-
termined.

If A is square and o; # o for all i # j, the left singu-
lar vectors {u;} and the right singular vectors {v;} are

uniquely determined to within a factor of +1.
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< EIGENVALUE DECOMPOSITION

Theorem 2 The nonzero singular values of A are the
(positive) square roots of the nonzero eigenvalues of AT A
or AAT (these matrices have the same nonzero eigenval-

ues).

* Proof:
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<& LOW-RANK APPROXIMATIONS

Theorem 3 ||A||; = o1, where ||Alls = maxycz

maxx|j1 || Ax]|.

[Ax|

3

* Proof:
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Another way to understand the SVD is to consider how a

matrix may be represented by a sum of rank-one matrices.

Theorem 4
.
_ 11 L
A= E oju;v;
j=1

where r is the rank of A.

* Proof:
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What is so useful about this expansion is that the v
partial sum captures as much of the “energy” of A as

possible by a matriz of at most rank-v. In this case, “en-

ergy” is defined by the 2-norm.

Theorem 5 For any v with 0 < v < r define

v
— —
A, = E oju;v;
J=1

If v = p =min(m,n), define o,,1 = 0.
Then,
HA - AVHQ = 0yp+1
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Lecture 4 - Fun with the SVD

OBJECTIVE: Applications of the SVD to image com-
pression, dimensionality reduction, visualization, informa-

tion retrieval and latent semantic analysis.

Textbook: Pages 487-490.

<& IMAGE COMPRESSION EXAMPLE

load clown.mat;
figure(1)
colormap(’gray’)

image (A);

[U,S,V] = svd(A);
figure(2)

k = 20;
colormap(’gray’)

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’);
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The code loads a clown image into a 200 x 320 array A;
displays the image in one figure; performs a singular value
decomposition on A; and displays the image obtained from a
rank-20 SVD approximation of A in another figure. Results
are displayed below:

The original storage requirements for A are 200 - 320 =
64, 000, whereas the compressed representation requires (2004

300 + 1) - 20 & 10, 000 storage locations.
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m [ m

1+243+4

Smaller eigenvectors capture high frequency variations (small

brush-strokes).
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<& TEXT RETRIEVAL - LSI

The SVD can be used to cluster documents and carry
out information retrieval by using concepts as opposed to
word-matching. This enables us to surmount the problems
of synonymy (car,auto) and polysemy (money bank, river

bank). The data is available in a term-frequency matrix

*
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If we truncate the approximation to the k-largest singular

values, we have

So

A =Ux,V/

Vi =%,'U/A
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In English, A is projected to a lower-dimensional space
spanned by the k singular vectors Uy, (eigenvectors of AAT).
To carry out retrieval, a query q € R" is first projected

to the low-dimensional space:
ar=3;'Ulq

And then we measure the angle between q; and the vy.

*
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<& PRINCIPAL COMPONENT ANALYSIS (PCA)

The columns of UX are called the principal compo-
nents of A. We can project high-dimensional data to these
components in order to be able to visualize it. This idea is
also useful for cleaning data as discussed in the previous text

retrieval example.

*
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For example, we can take several 16 x 16 images of the
digit 2 and project them to 2D. The images can be written
as vectors with 256 entries. We then from the matrix A €
R™2% carry out the SVD and truncate it to k = 2. Then
the components U X are 2 vectors with n data entries. We

can plot these 2D points on the screen to visualize the data.

*
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