Lecture 3 - The Singular Value Decomposition (SVD)

OBJECTIVE: The SVD is a matrix factorization that has many applications: e.g., information retrieval, least-squares problems, image processing.

Textbook: Pages 487–490.

\diamond EIGENVALUE DECOMPOSITION

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$. If we put the eigenvalues of \mathbf{A} into a diagonal matrix $\mathbf{\Lambda}$ and gather the eigenvectors into a matrix \mathbf{X} , then the eigenvalue decomposition of \mathbf{A} is given by

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

But what if **A** is not a square matrix? Then the SVD comes to the rescue.

 \diamondsuit FORMAL DEFINITION OF THE SVD

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, the SVD of \mathbf{A} is a factorization of the form

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where **u** are the left **singular vectors**, σ are the **singular values** and **v** are the right singular vectors.

 $\Sigma \in \mathbb{R}^{n \times n}$ is diagonal with positive entries (singular values in the diagonal).

 $\mathbf{U} \in \mathbb{R}^{m \times n}$ with orthonormal columns.

 $\mathbf{V} \in \mathbb{R}^{n \times n}$ with orthonormal columns.

 $(\Rightarrow \mathbf{V} \text{ is orthogonal so } \mathbf{V}^{-1} = \mathbf{V}^T)$

The equations relating the right singular values $\{\mathbf{v}_j\}$ and the left singular vectors $\{\mathbf{u}_i\}$ are

$$\mathbf{A}\mathbf{v}_j = \sigma_j \mathbf{u}_j \qquad j = 1, 2, \dots, n$$

24

i.e.,

$$\mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix}$$

or $AV = U\Sigma$.

*		
L		

- 1. There is no assumption that $m \ge n$ or that **A** has full rank.
- 2. All diagonal elements of Σ are non-negative and in nonincreasing order:

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$$

where
$$p = \min(m, n)$$

Theorem 1 Every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has singular value decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

Furthermore, the singular values $\{\sigma_j\}$ are uniquely determined.

If **A** is square and $\sigma_i \neq \sigma_j$ for all $i \neq j$, the left singular vectors $\{\mathbf{u}_j\}$ and the right singular vectors $\{\mathbf{v}_j\}$ are uniquely determined to within a factor of ± 1 .

CPSC-340: Machine Learning and Data Mining

Theorem 2 The nonzero singular values of \mathbf{A} are the (positive) square roots of the nonzero eigenvalues of $\mathbf{A}^T \mathbf{A}$ or $\mathbf{A}\mathbf{A}^T$ (these matrices have the same nonzero eigenvalues).

★ Proof:			

\diamond LOW-RANK APPROXIMATIONS

Theorem 3 $\|\mathbf{A}\|_2 = \sigma_1$, where $\|\mathbf{A}\|_2 = \max_{\mathbf{x}\neq 0} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{\|\mathbf{x}\|\neq 1} \|\mathbf{A}\mathbf{x}\|.$

★ Proof:

Another way to understand the SVD is to consider how a matrix may be represented by a sum of rank-one matrices.

28

Theorem 4

$$\mathbf{A} = \sum_{j=1}^r \sigma_j \mathbf{u}_j \mathbf{v}_j^T$$

where r is the rank of \mathbf{A} .

★ Proof:		

What is so useful about this expansion is that the ν^{th} partial sum captures as much of the "energy" of **A** as possible by a matrix of at most rank- ν . In this case, "energy" is defined by the 2-norm.

Theorem 5 For any ν with $0 \leq \nu \leq r$ define

$$\mathbf{A}_{
u} = \sum_{j=1}^{
u} \sigma_j \mathbf{u}_j \mathbf{v}_j^T$$

If
$$\nu = p = \min(m, n)$$
, define $\sigma_{\nu+1} = 0$.
Then,

$$\|\mathbf{A} - \mathbf{A}_{\nu}\|_2 = \sigma_{\nu+1}$$

Lecture 4 - Fun with the SVD

OBJECTIVE: Applications of the SVD to image compression, dimensionality reduction, visualization, information retrieval and latent semantic analysis.

30

Textbook: Pages 487–490.

\diamond IMAGE COMPRESSION EXAMPLE

load clown.mat;

figure(1)

colormap('gray')

image(A);

[U,S,V] = svd(A);

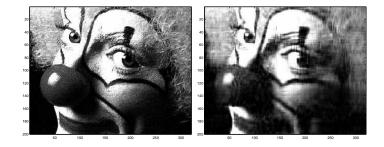
figure(2)

k = 20;

colormap('gray')

image(U(:,1:k)*S(1:k,1:k)*V(:,1:k)');

The code loads a clown image into a 200×320 array **A**; displays the image in one figure; performs a singular value decomposition on **A**; and displays the image obtained from a rank-20 SVD approximation of **A** in another figure. Results are displayed below:



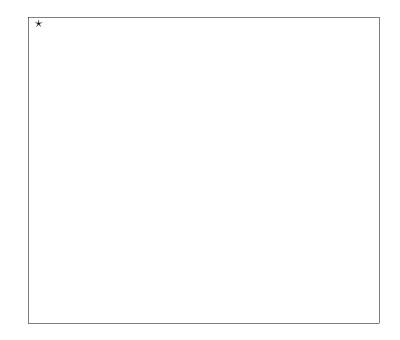
The original storage requirements for **A** are $200 \cdot 320 = 64,000$, whereas the compressed representation requires $(200+300+1) \cdot 20 \approx 10,000$ storage locations.

CPSC-340: Machine Learn	ing and Data Mining	32
	u ₁ σ ₁ v ₁	u ₂ σ ₂ v ₂
$u_3 \sigma_3 v_3$	$u_4 \sigma_4 v_4$	1+2+3+4
	tite and the second	A CONTRACTOR
$u_5 \sigma_5 v_5$	u ₆ σ ₆ v ₆	1+2+3+4+5+6

Smaller eigenvectors capture high frequency variations (small brush-strokes).

\diamond TEXT RETRIEVAL - LSI

The SVD can be used to cluster documents and carry out information retrieval by using concepts as opposed to word-matching. This enables us to surmount the problems of synonymy (car,auto) and polysemy (money bank, river bank). The data is available in a term-frequency matrix



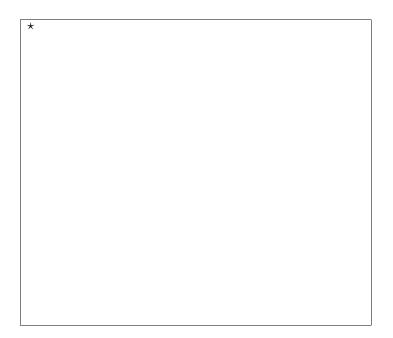
If we truncate the approximation to the k-largest singular values, we have

34

$$\mathbf{A} = \mathbf{U}_k \boldsymbol{\Sigma}_k \mathbf{V}_k^T$$

 So

$$\mathbf{V}_k^T = \mathbf{\Sigma}_k^{-1} \mathbf{U}_k^T \mathbf{A}$$



In English, **A** is projected to a lower-dimensional space spanned by the k singular vectors \mathbf{U}_k (eigenvectors of $\mathbf{A}\mathbf{A}^T$). To carry out **retrieval**, a **query** $\mathbf{q} \in \mathbb{R}^n$ is first projected to the low-dimensional space:

$$\widehat{\mathbf{q}}_k = \mathbf{\Sigma}_k^{-1} \mathbf{U}_k^T \mathbf{q}$$

And then we measure the angle between $\widehat{\mathbf{q}}_k$ and the \mathbf{v}_k .

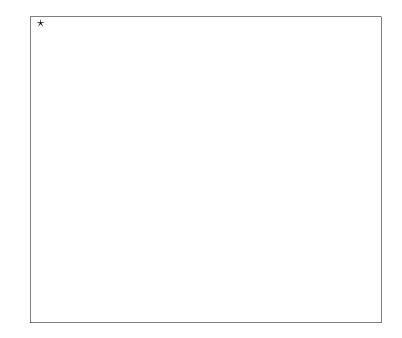
*

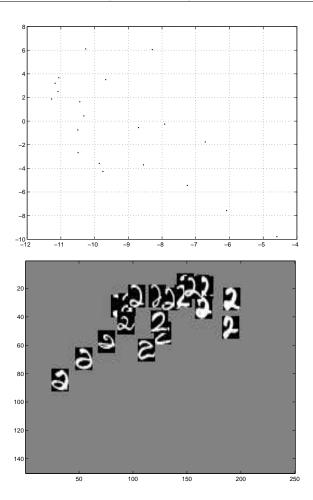
♦ PRINCIPAL COMPONENT ANALYSIS (PCA)

The columns of $\mathbf{U}\Sigma$ are called the **principal components** of **A**. We can project high-dimensional data to these components in order to be able to visualize it. This idea is also useful for cleaning data as discussed in the previous text retrieval example.

*			

For example, we can take several 16×16 images of the digit 2 and project them to 2D. The images can be written as vectors with 256 entries. We then from the matrix $\mathbf{A} \in \mathbb{R}^{n \times 256}$, carry out the SVD and truncate it to k = 2. Then the components $\mathbf{U}_k \boldsymbol{\Sigma}_k$ are 2 vectors with n data entries. We can plot these 2D points on the screen to visualize the data.





38