
CPSC-340: Machine Learning and Data Mining 128

Lecture 11 - Boosting and Trees

OBJECTIVE: In this lecture, we learn to classify data us-

ing simple decision trees (stumps). We then use a sequential

minmax algorithm, called boosting, to combine these simple

trees into more complex trees. That is, the idea of boosting

is to combine simple classifiers to produce more sophisticated

ones.

Textbook: Pages 266–279 and 299 to 345.

Decision Stumps

A decision stump partitions the feature space into two halves.

It assigns the label -1 to points in one half and +1 to points

in the other half. The algorithm works as follows.

CPSC-340: Machine Learning and Data Mining 129

?



CPSC-340: Machine Learning and Data Mining 130

At each splitting point, the decision stump estimates the

probability of the points in region 1 being equal to 1 and -1

as follows:

p(y = 1 in region R1) =
1

N1

∑

xi∈R1

I(yi = 1)

p(y = −1 in region R1) =
1

N1

∑

xi∈R1

I(yi = −1)

where N1 is the number of points in region 1. We then assign

to region 1 the label with the highest probability.

Lets assume that after computing the above probabilities,

the label of region 1 is +1 and the label of region 2 is -1.

The total error is then computed as follows:

error =
1

NR1

∑

xi∈R1

I(yi 6= +1) +
1

NR2

∑

xi∈R2

I(yi 6= −1)

Note that the error is a function of where we place the stump

(decision boundary) and what feature (or dimension) we are

considering. Therefore, we need to compute the errors for

CPSC-340: Machine Learning and Data Mining 131

each dimension and for each position of the stump. We,

finally, pick the stump that results in the lowest error.

Weighted Decision Stumps

Not all points are born equal. Some are more important.

Let’s look at an example:

?

Points near the boundary are more critical to classification.

We saw this before in the context of SVMs. It is possible to



CPSC-340: Machine Learning and Data Mining 132

account for this with decision stumps by adding a weight wi

to each feature xi. We then seek to minimise the following

error:

ew =
1∑

xi∈R1
wi

∑

xi∈R1

wiI(yi 6=+1)+
1∑

xi∈R2
wi

∑

xi∈R2

wiI(yi 6=−1)

Boosting

Boosting is a sequential minimax technique for combining M

simple (weak) classifiers into a powerful (strong) one. If the

m-th weak classifier is denoted by Gm(x), then the strong

classifier is:

G(x) = sign

[
M∑

m=1

αmGm(x)

]

where αm is a learned coefficient that is larger for better

(accurate) weak classifiers.

Pictorially, the algorithm proceeds as follows:

CPSC-340: Machine Learning and Data Mining 133

?

Boosting starts by assigning uniform weights wi = 1/N to

each data point x1, x2, . . . , xN . At each successive iteration

m, the weights are changed so that points that were miss-

classified get a higher weight for the next iteration. That is,

boosting focus increasingly on the points that are harder to

classify.

The pseudo-code for AdaBoost (a variant of boosting in-



CPSC-340: Machine Learning and Data Mining 134

troduced by Rob Schapire) follows:

1. Initialize weights: wi = 1/N for i = 1, . . . , N.

2. For m=1 to M:

(a) Fit a classifier Gm(x) with weights wi.

(b) Compute the error of the weak classifier:

errorm =

∑N
i=1 wiI (yi 6= Gm(xi))∑N

1=1 wi

(c) Compute classifier coefficients:

αm = log

(
1− errorm

errorm

)

(d) Update the weights:

wi ←− wi exp [αmI (yi 6= Gm(xi))]

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]


