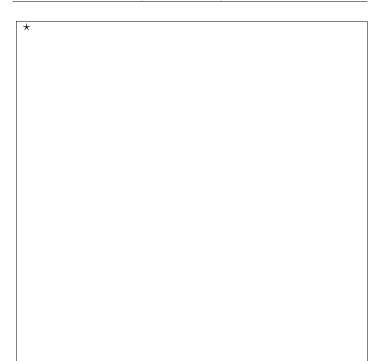
Lecture 11 - Probabilistic Graphical Models

105

OBJECTIVE: Probabilistic graphical models (aka Bayes nets) combine probability theory and graphs in order to represent large domains of random variables. We will tackle two tasks: inference and learning. In inference, we assume we have the conditional probability tables and focus on estimating the probability of a group of variables given the other variables. In learning, we compute the conditional probability tables from data.

Textbook: Missing section.

Let **x** denote two random variables $\mathbf{x} = (x_1, x_2)$, each taking 3 possible values. That is, $x_i \in E = \{1, 2, 3\}$. We can represent the marginal, conditional and joint distributions with the following tables:



*

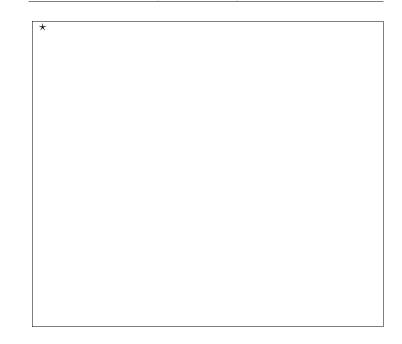
107

$$x_i \in E = \{1, \dots, r\}$$
 for $i = 1 : n$

size(joint probability table) =

We can exploit conditional independencies and graph theory to replace large tables by a group of smaller tables.

A **directed graph** is a pair G = (x, e) with nodes $x_{1:n}$ and directed edges $e = \{(x_i, x_j) : i \neq j\}$. The nodes will correspond to r.v.s and the edges to conditional probabilities. We assume that G is acyclic. CPSC-340: Machine Learning and Data Mining



In general:

$$p(x_{1:n}) = \prod_{i=1}^{n} p(x_i | parents(x_i))$$

The size of each table is r^{m_i+1} , where m_i is the number of parents of node x_i .

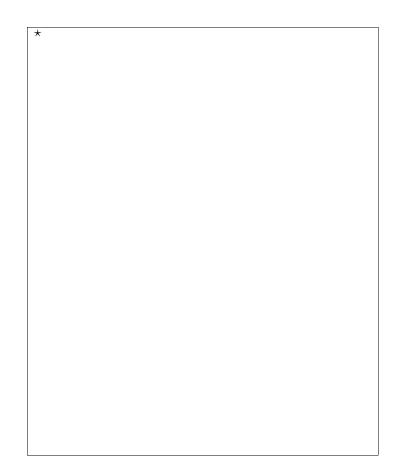
 \star

Graphical models are often used as expert systems:

109

CPSC-340: Machine Learning and Data Mining

Conditional Independence Statements

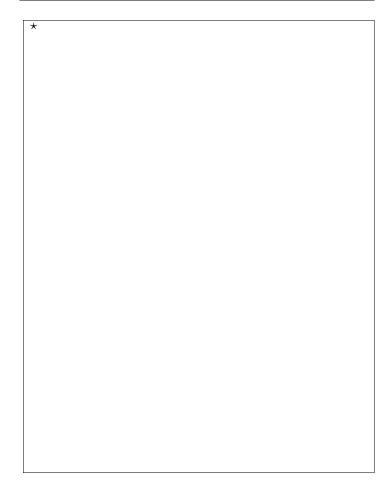


110

Inference in DAGs

Suppose we are interested in computing $P(x_1|x_6 = 1)$ in the following model:

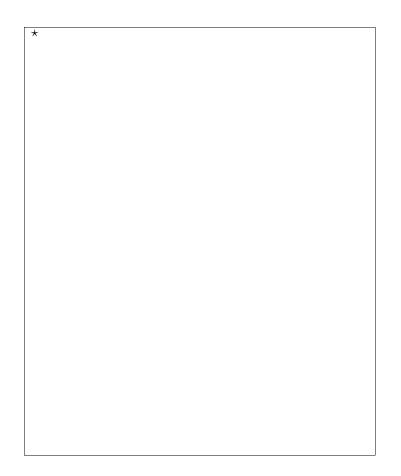
* $p(x_1|x_6 = 1) =$



The idea of replacing sums of products (ac+ab) by products of sums (a(b+c)) is at the heart of most inference algorithms. For exact inference, in Gaussian and discrete networks of reasonable size, we use the **junction tree algorithm**. This algorithm involves two steps:

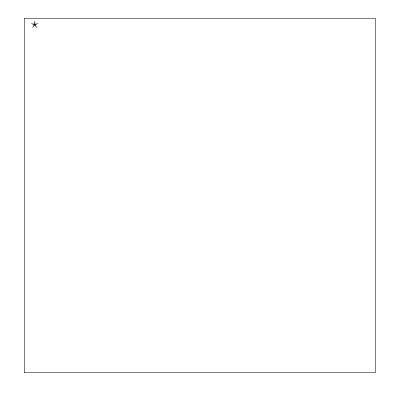
- 1. Converting the directed graph to an undirected graph called the junction tree.
- 2. Running belief propagation. That is, replace sums of products by products of sums.

Dynamic Bayesian Networks and HMMs



A General Framework

As hinted by the previous example, many algorithms can be placed in the framework of graphical models.



CPSC-340: Machine Learning and Data Mining

Learning in Graphical Models

We consider two paradigms: frequentist and Bayesian.

Frequentist Learning

It assumes that there is a true model (say a parametric model with parameters θ_0). The estimate is denoted $\hat{\theta}$. It can be found by maximising the **likelihood**:

* $\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} p(x_{1:n}|\theta)$ For **identical and independent distributed** (i.i.d.) data: $p(x_{1:n}|\theta) =$ $\mathcal{L}(\theta) = \log p(x_{1:n}|\theta) =$

 \star Let $x_{1:n},$ with $x_i \in \{0,1\},$ be i.i.d. Bernoulli: $p(x_{1:n}|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$ With $m \triangleq \sum x_i$, we have $\mathcal{L}(\theta) =$ Differentiating, we get

CPSC-340: Machine Learning and Data Mining

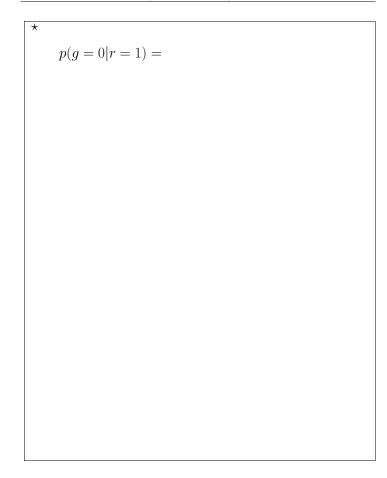
118

We can now go back to graphical models and learn the **conditional probability tables** (CPTs):

\star Let the DAG be			
And assume we have co	olle	cte	d the data:
	с	r	
		r 0	g
	0		g 0
	0 0	0	g 0 0
	0 0 1	0 0	g 0 1

 \star The conditional probabilities are: $p(c|\gamma) \propto$ $p(r|\alpha_1, c=0) \propto$ $p(r|\alpha_2, c=1) \propto$ $p(g|\beta_1, c=0) \propto$ $p(g|\beta_2, c=1) \propto$ and hence, the ML estimates are: $\gamma =$ $\alpha_1 =$ $\alpha_2 =$ $\beta_1 =$ $\beta_2 =$ Now we can carry out inference to answer queries like p(g|r=1).

119



Frequentist Model Selection

How about using another model to represent the same data?

*	
$p(c \gamma)$	x
$p(r \alpha_1, c=0)$	\propto
$p(r \alpha_2, c=1)$	\propto
p(g)	\propto
$\gamma =$	
$\alpha_1 =$	
$\alpha_2 =$	
$\beta =$	

CPSC-340: Machine Learning and Data Mining

122

How do we know which model provides the most satisfiable answer? An answer to this question is to have some **test data** and check which model predicts this data best. That is, we use **cross-validation** again.

* Let the test data point be $x_{test} = (1, 1, 1)$ and the two DAGs be denoted M_1 and M_2 . Then $p(x_{test}|\theta_1, M_1) =$ $p(x_{test}|\theta_2, M_2) =$

The current approach has a few short-comings:

- There is no mechanism for incorporating *a priori* knowledge.
- The model selection strategy is very dependent on the parameter estimates. If we have few data points, the parameter estimates can be misleading.
- Model selection requires extra data (the test dataset).

The Bayesian learning paradigm helps surmount these difficulties.

Bayesian Learning

Given our **prior** knowledge $p(\theta)$ and the data model $p(\cdot|\theta)$, the Bayesian approach allows us to update our prior using the new data x as follows:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

124

where $p(\theta|x)$ is the **posterior distribution**, $p(x|\theta)$ is the likelihood and p(x) is the **marginal likelihood** (evidence). Note

$$p(x) = \int p(x|\theta)p(\theta)d\theta$$

For a particular model structure M_i , we have

$$p(\theta|x, M_i) = \frac{p(x|\theta, M_i)p(\theta|M_i)}{p(x|M_i)}$$

Models are selected according to their posterior:

$$P(M_i|x) \propto P(x|M_i)p(M_i) = P(M_i) \int p(x|\theta, M_i)p(\theta|M_i)d\theta$$

The ratio $P(x|M_i)/P(x|M_j)$ is known as the **Bayes Fac**tor. Typically, p(M) is uniform (the same for all models), so what decides what model we should be using is $p(x|M_i)$.

★ Let
$$x_{1:n}$$
, with $x_i \in \{0, 1\}$, be i.i.d. Bernoulli: $x_i \sim \mathcal{B}(1, \theta)$

$$p(x_{1:n}|\theta) = \prod_{i=1}^{n} p(x_i|\theta) = \theta^m (1-\theta)^{n-m}$$

Let us choose the following **Beta** prior distribution:

$$p(\theta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

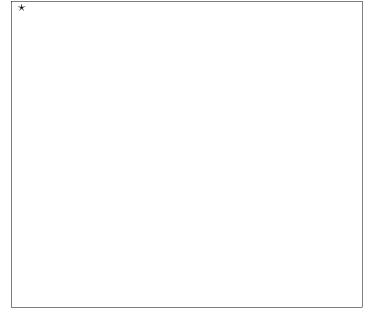
where Γ denotes the Gamma-function. For the time being, α and β are fixed **hyper-parameters**. The posterior distribution is proportional to:

$$p(\theta|x) \propto$$

with normalisation constant

Since the posterior is also Beta, we say that the Beta prior is **conjugate** with respect to the binomial likelihood. Conjugate priors lead to the same form of posterior.

Different hyper-parameters of the Beta $\mathcal{B}e(\alpha,\beta)$ distribution give rise to different prior specifications:



The generalisation of the Beta distribution is the Dirichlet

distribution $\mathcal{D}(\alpha_i)$, with density

$$p(\theta) \propto \prod_{i=1}^k \theta_i^{\alpha_i-1}$$

where we have assumed k possible thetas. Note that the Dirichlet distribution is conjugate with respect to a Multinomial likelihood.

Bayesian Prediction

We predict by marginalising over the posterior of the parameters

$$p(x_{n+1}|x_{1:n}) = \int p(x_{n+1}, \theta | x_{1:n}) d\theta$$
$$= \int p(x_{n+1}|\theta) p(\theta | x_{1:n}) d\theta$$