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Lecture 11 - Probabilistic Graph-

ical Models

OBJECTIVE: Probabilistic graphical models (aka Bayes

nets) combine probability theory and graphs in order to rep-

resent large domains of random variables. We will tackle

two tasks: inference and learning. In inference, we assume

we have the conditional probability tables and focus on esti-

mating the probability of a group of variables given the other

variables. In learning, we compute the conditional probabil-

ity tables from data.

Textbook: Missing section.

Let x denote two random variables x = (x1, x2), each

taking 3 possible values. That is, xi ∈ E = {1, 2, 3}. We can

represent the marginal, conditional and joint distributions

with the following tables:
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?
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?

xi ∈ E = {1, . . . , r} for i = 1 : n

size( joint probability table ) =

We can exploit conditional independencies and graph theory

to replace large tables by a group of smaller tables.

A directed graph is a pair G = (x, e) with nodes x1:n

and directed edges e = {(xi, xj) : i 6= j}. The nodes will

correspond to r.v.s and the edges to conditional probabilities.

We assume that G is acyclic.
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?

In general:

p(x1:n) =
n∏

i=1

p(xi|parents(xi))

The size of each table is rmi+1, where mi is the number of

parents of node xi.
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Graphical models are often used as expert systems:

?

CPSC-340: Machine Learning and Data Mining 110

Conditional Independence Statements

?
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Inference in DAGs

Suppose we are interested in computing P (x1|x6 = 1) in the

following model:

?

p(x1|x6 = 1) =
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?



CPSC-340: Machine Learning and Data Mining 113

The idea of replacing sums of products (ac+ab) by products

of sums (a(b+c)) is at the heart of most inference algorithms.

For exact inference, in Gaussian and discrete networks of rea-

sonable size, we use the junction tree algorithm. This

algorithm involves two steps:

1. Converting the directed graph to an undirected graph

called the junction tree.

2. Running belief propagation. That is, replace sums of

products by products of sums.
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Dynamic Bayesian Networks and HMMs

?
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A General Framework

As hinted by the previous example, many algorithms can be

placed in the framework of graphical models.

?

CPSC-340: Machine Learning and Data Mining 116

Learning in Graphical Models

We consider two paradigms: frequentist and Bayesian.

Frequentist Learning

It assumes that there is a true model (say a parametric model

with parameters θ0). The estimate is denoted θ̂. It can be

found by maximising the likelihood:

?

θ̂ = arg max
θ

p(x1:n|θ)

For identical and independent distributed

(i.i.d.) data:

p(x1:n|θ) =

L(θ) = log p(x1:n|θ) =



CPSC-340: Machine Learning and Data Mining 117

? Let x1:n, with xi ∈ {0, 1}, be i.i.d. Bernoulli:

p(x1:n|θ) =

n∏

i=1

p(xi|θ)

With m ,
∑

xi, we have

L(θ) =

Differentiating, we get
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We can now go back to graphical models and learn the

conditional probability tables (CPTs):

? Let the DAG be

And assume we have collected the data:

c r g

0 0 0

0 0 0

1 0 1

1 1 1

1 1 1
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The conditional probabilities are:

p(c|γ) ∝

p(r|α1, c = 0) ∝

p(r|α2, c = 1) ∝

p(g|β1, c = 0) ∝

p(g|β2, c = 1) ∝

and hence, the ML estimates are:

γ =

α1 =

α2 =

β1 =

β2 =

Now we can carry out inference to answer queries like

p(g|r = 1).
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?

p(g = 0|r = 1) =



CPSC-340: Machine Learning and Data Mining 121

Frequentist Model Selection

How about using another model to represent the same data?

?

p(c|γ) ∝

p(r|α1, c = 0) ∝

p(r|α2, c = 1) ∝

p(g) ∝

γ =

α1 =

α2 =

β =
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How do we know which model provides the most satisfiable

answer? An answer to this question is to have some test

data and check which model predicts this data best. That

is, we use cross-validation again.

? Let the test data point be xtest = (1, 1, 1) and the two

DAGs be denoted M1 and M2. Then

p(xtest|θ1, M1) =

p(xtest|θ2, M2) =
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The current approach has a few short-comings:

• There is no mechanism for incorporating a priori knowl-

edge.

• The model selection strategy is very dependent on the

parameter estimates. If we have few data points, the

parameter estimates can be misleading.

• Model selection requires extra data (the test dataset).

The Bayesian learning paradigm helps surmount these diffi-

culties.

Bayesian Learning

Given our prior knowledge p(θ) and the data model p(·|θ),

the Bayesian approach allows us to update our prior using

the new data x as follows:

p(θ|x) =
p(x|θ)p(θ)

p(x)
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where p(θ|x) is the posterior distribution, p(x|θ) is the

likelihood and p(x) is the marginal likelihood (evidence).

Note

p(x) =

∫
p(x|θ)p(θ)dθ

For a particular model structure Mi, we have

p(θ|x, Mi) =
p(x|θ, Mi)p(θ|Mi)

p(x|Mi)

Models are selected according to their posterior:

P (Mi|x) ∝ P (x|Mi)p(Mi) = P (Mi)

∫
p(x|θ, Mi)p(θ|Mi)dθ

The ratio P (x|Mi)/P (x|Mj) is known as the Bayes Fac-

tor. Typically, p(M) is uniform (the same for all models),

so what decides what model we should be using is p(x|Mi).
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? Let x1:n, with xi ∈ {0, 1}, be i.i.d. Bernoulli: xi ∼
B(1, θ)

p(x1:n|θ) =
n∏

i=1

p(xi|θ) = θm(1− θ)n−m

Let us choose the following Beta prior distribution:

p(θ) =
Γ(α)Γ(β)

Γ(α + β)
θα−1(1− θ)β−1

where Γ denotes the Gamma-function. For the time

being, α and β are fixed hyper-parameters. The

posterior distribution is proportional to:

p(θ|x) ∝

with normalisation constant

CPSC-340: Machine Learning and Data Mining 126

Since the posterior is also Beta, we say that the Beta prior

is conjugate with respect to the binomial likelihood. Con-

jugate priors lead to the same form of posterior.

Different hyper-parameters of the Beta Be(α, β) distribution

give rise to different prior specifications:

?

The generalisation of the Beta distribution is the Dirichlet
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distribution D(αi), with density

p(θ) ∝
k∏

i=1

θαi−1
i

where we have assumed k possible thetas. Note that the

Dirichlet distribution is conjugate with respect

to a Multinomial likelihood.

Bayesian Prediction

We predict by marginalising over the posterior of the param-

eters

p(xn+1|x1:n) =

∫
p(xn+1, θ|x1:n)dθ

=

∫
p(xn+1|θ)p(θ|x1:n)dθ


