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Lecture 10 - Unsupervised Learn-

ing

OBJECTIVE: When there are no labels y, there are many

useful patterns we can still find in the data. Here we intro-

duce two of the most popular algorithms in machine learning

and data mining: K-means and EM.

Textbook: Pages 236–252 and 411–435.

Unsupervised Learning

Our goal is to automatically discover patterns and structure

in the data. Some examples include

• Novelty detection (e.g. detecting new strands of HIV).

• Data association (e.g. machine translation, multi-target

tracking, object recognition from annotated images).

• Clustering (grouping similar items together).

CPSC-340: Machine Learning and Data Mining 83

Clustering

Assume we are given the data x1:n, with xi ∈ R
2.

?

We want to find clusters (groups where data items are simi-

lar).
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K-means

K-means is a simple iterative algorithm for clustering data.

In our 2D example, it proceeds as follows:

?
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1. Initialisation: Choose k = 2 means µ1:2 at random.

2. Compute distances: For c = 1, . . . , k and i =

1, . . . , n compute the distance ‖xi − µc‖2.

3. Assign data to nearest mean: To keep track of

assignments, introduce the indicator variable zi, such

that

Ic(zi) =





1 if c = arg min
c′

‖xi − µc′‖2

0 otherwise

That is, I2(zi) = 1 if observation xi is closer to cluster

2. Ic(zi) end up being the entries of an n × k matrix

with only one 1 per row and many zeros.

4. Update means:

µc =

∑n
i=1 Ic(zi)xi∑n
i=1 Ic(zi)

5. Repeat: Go back to step 2. until the means and as-

signments stop changing.
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The problem with this algorithm is that the assignments are

hard. Something is either this or that. Sometimes, however,

we would like to say that something is this with probability

0.7 or that with probability 0.3.

Finite Mixtures of Gaussians

We would like to find not only the means, but also the vari-

ances of each cluster and the probabilities of belonging to

each cluster.

?
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?

For the 2 clusters, we approximate the probability of each

data point with a weighted combination of Gaussians

p(xi|µ1:2, σ1:2) = p(zi = 1)N (xi|µ1, σ
2
1)+p(zi = 2)N (xi|µ2, σ

2
2)

Here, the unknown parameters are (µ1:2, σ
2
1:2) and the cluster

probabilities p(zi = 1) and p(zi = 2), which we rewrite as

p(1) and p(2) for brevity. Note that p(1)+p(2) = 1 to ensure

that we still have a probability.



CPSC-340: Machine Learning and Data Mining 88

In general, we have

p(xi|θ) =
k∑

c=1

p(c)N (xi|µc, σ
2
c )

where θ = (µ1:c, σ
2
1:c) summarises the model parameters and

p(c) = p(zi = c). Clearly,
∑k

c=1 p(c) = 1.

Probability Review

Before introducing EM, we need to review some key concepts

from probability: conditioning, marginalisation, Bayes rule

and multinomial (discrete) distributions. This material will

be useful for us to discuss models for multimodal (eg music

and text) search engines and for us to design probabilistic

expert systems (of of the core ideas in modern AI).
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Conditional Probability

P (A|B) ,
P (AB)

P (B)

where P (A|B) is the conditional probability of A given

that B occurs, P (B) is the marginal probability of B

and P (AB) is the joint probability of A and B. In

general, we obtain a chain rule

P (A1:n) = P (An|A1:n−1)P (An−1|A1:n−2) . . . P (A2|A1)P (A1)

? Assume we have an urn with 3 red balls and 1 blue

ball: U = {r, r, r, b}. What is the probability of drawing

(without replacement) 2 red balls in the first 2 tries?
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Marginalisation

Let the sets B1:n be disjoint and let their union cover the set

of all possible events Ω, that is
⋃n

i=1 Bi = Ω. Then

P (A) =

n∑

i=1

P (A, Bi)

? What is the probability that the second ball drawn

from our urn will be red?
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Bayes Rule

Bayes rule allows us to reverse probabilities:

P (A|B) =
P (B|A)P (A)

P (B)

Combinining this with marginalisation, we obtain a powerful

tool for statistical modelling:

P (modeli|data) =
P (data|modeli)P (modeli)∑M

j=1 P (data|modelj)P (modelj)

That is, if we have prior probabilities for each model and

generative data models, we can compute how likely each

model is a posteriori (in light of our prior knowledge and

the evidence brought in by the data).



CPSC-340: Machine Learning and Data Mining 92

Discrete random variables

Let E be a discrete set, e.g. E = {0, 1}. A discrete

random variable (r.v.) is a map from Ω to E:

X(w) : Ω 7→ E wherew ∈ Ω

? Assume we are throwing a die and are interested in

the events E = {even, odd}. Here Ω = {1, 2, 3, 4, 5, 6}.
The r.v. takes the value X(w) = even if w ∈ {2, 4, 6}
and X(w) = odd if w ∈ {1, 3, 5}. We describe this r.v.

with a probability distribution p(even) = P (X =

even)
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The cumulative distribution function is defined as

F (x) = P (X ≤ x) and would for this example be:

?

Bernoulli Random Variables

Let E = {0, 1}, P (X = 1) = λ, and P (X = 0) = 1− λ.

We now introduce the set indicator variable. (This is a very

useful notation.)

IA(w) =





1 if w ∈ A;

0 otherwise.

Using this convention, the probability distribution of a Bernoulli
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random variable reads:

p(x) = λI{1}(x)(1− λ)I{0}(x).

?
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Multinomial Distribution

Now suppose we have a set of k boxes and a set of n balls.

Each ball is dropped from a certain height and will fall ran-

domly into one of the boxes. The probability that a ball falls

into box i is given by λi. The λis are constrained such that

k∑

i=1

λi = 1, 0 ≤ λi ≤ 1

If we define Xi = mi to be the event that there are mi

balls in box i then the probability that the n balls are dis-

tributed in the boxes in a specified arrangement m1:k =

(m1, m2, . . . , mk) is

p(m1:k) =

(
n!

m1!m2! . . . mk!

) k∏

i=1

λmi
i where

k∑

i=1

mi = n

The term to the left of the product is the normalizing term

and we need not worry about it here. Note that the binomial

is a subcase of the Multinomial; if we set k = 2, λ1 = λ and

λ2 = (1− λ) then we get the binomial distribution.
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? Say we are given a text “I am a teacher I I teacher”.

We convert this text to a frequency table T = [3 1 1 2].

The probability p(T ) for this text is

where λi is the probability of the i-th word appearing in

the text.

Instead of just one text, we usually have a database of texts.

We use this database to learn the word probabilities. This is

usefult for clustering documents and designing information

retrieval algorithms.
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We also encounter frequency tables with missing values




3 5 6 2

0 ? 3 1

1 2 ? 6




These tables arise in data mining and collaborative filtering.

Here the columns represent items (say movies) and each row

has the movie ratings assigned by a particular movie expert.

By learning the Multinomial parameters, we will be able to

complete the table and to recommend movies to viewers.
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EM for Mixtures of Gaussians

In this section, we use intuition to introduce the expectation-

maximisation (EM). If we know Ic(zi), then it is easy to

compute (µc, σ
2
c ) by maximum likelihood. We repeat this

for each cluster. The problem is that we have a chicken and

egg situation. To know the cluster memberships, we need

the parameters of the Gaussians. To know the parameters,

we need the cluster memberships.

One solution is to approximate Ic(zi) with our expectation of

it given the data and our current estimate of the parameters

θ. That is, we replace Ic(zi) with

ξic , E [Ic(zi)|xi, θ]
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?

ξic , E [Ic(zi)|xi, θ] =

Note that ξic is a soft-assignments matrix:

?
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Once we know ξic, we can compute the Gaussian mixture

parameters:

µc =

∑n
i=1 ξicxi∑n
i=1 ξic

Σc =

∑n
i=1 ξic(xi − µc)(xi − µc)

′
∑n

i=1 ξic

p(c) =
1

n

n∑

i=1

ξic

The EM for Gaussians is as follows:

1. Initialise.

2. E Step: At iteration t, compute the expectation of the

indicators for each i and c:

ξ
(t)
ic =

p(c)(t)N (xi|µ(t)
c , Σ

(t)
c )

∑k
c′=1 p(c′)(t)N (xi|µ(t)

c′ , Σ
(t)
c′ )

and normalise it (divide by sum over c).

3. M Step: Update the parameters p(c)(t), µ
(t)
c , Σ

(t)
c .
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EM for Categorical Data

Matrix data with categorical entries is ubiquitous on the

web. Examples include word-document matrices used for

information retrieval and item-judge ratings for collaborative

filtering:

words1:L

documents1:n




3 1 . . . 6

7 4 . . . 2

... . . .


 = T1:n

judges1:L

movies1:n




1 ? . . . 5

5 4 . . . ?

... . . .


 = M1:n

Each row of N can be modelled with a multinomial distri-

bution.

p(Ti) ∝
nw∏

w=1

δTiw
w
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We assume that the text documents are i.i.d.

p(T1:n) =
n∏

i=1

p(Ti)

Suppose the documents come from nc distinct clusters. Then

they are distributed according to a mixture of multinomials:

p(Ti|θ) =

nc∑

c=1

p(c)

nw∏

w=1

δTiw
wc

The maximum likelihood EM for Categorical data involves

iterating the following two steps:

1. E Step: At iteration t, compute the expectation of the

indicators for each i and c:

ξic ∝ p(c)

nw∏

w=1

δTiw
wc

and normalise it (divide by sum over c).
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2. M Step: Update the parameters:

δwc =

∑n
i=1 ξicTiw∑n

i=1

∑nw

w=1 Tiwξic

p(c) =
1

n

n∑

i=1

ξic

EM for Multimodal Data

A document with an image (represented by a vector xi ∈ R
d)

and text Ti can be modelled as follows:

p(di|θ) =

nc∑

c=1

p(c)N (xi|µc, Σc)

nw∏

w=1

δTiw
wc

The maximum likelihood EM is as follows:

1. E Step: At iteration t, compute the expectation of the

indicators for each i and c:

ξic ∝ p(c)N (xi|µc, Σc)

nw∏

w=1

δTiw
wc

and normalise it (divide by sum over c).
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2. M Step: Update the parameters:

µc =

∑n
i=1 ξicxi∑n
i=1 ξic

Σc =

∑n
i=1 ξic(xi − µc)(xi − µc)

′
∑n

i=1 ξic

δwc =

∑n
i=1 ξicTiw∑n

i=1

∑nw

w=1 Tiwξic

p(c) =
1

n

n∑

i=1

ξic


