
CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Solutions to Practice Homework # 5

1. Consider the following activities and times:

Activities | A B C D E F G H I J K

----------------------------------------------

Start | 11 11 12 12 1 2 3 4 4 5 5

End | 1 1 2 2 3 4 5 6 6 7 7

The only activity with two conflicts is F. All others have three or more conflicts. If F is scheduled,
then the maximum number of activities that can be scheduled is three, e.g. A, F, H. However, A, E,
G, K is a larger set of activities that can be scheduled.

2. We can get a 3-sequence LCS algorithm by extending the non-recursive 2-sequence algorithm given in
the Cormen et al. text or class lecture notes.

Once all array entries are computed, for sequences of length n, the array entry Length[n,n,n] contains
the length of LCS.

function LCS-length(X, Y, Z)

for i <-- 1 to n do Length[i, 0, 0] <-- 0

for j <-- 1 to n do Length[0, j, 0] <-- 0

for k <-- 1 to n do Length[0, 0, k] <-- 0

for i <-- 1 to n do

for j <-- 1 to n do

for k <-- 1 to n do

if X[i] = Y[j] = Z[k] then

Length[i, j, k] <-- Length[i-1, j-1, k-1] + 1

else if Length[i-1, j, k] >= Length[i, j-1, k] and

Length[i-1, j, k] >= Length[i, j, k-1] then

Length[i, j, k] <-- Length[i-1, j, k]

else if Length[i, j-1, k] >= Length[i-1, j, k] and

Length[i, j-1, k] >= Length[i, j, k-1] then

Length[i, j, k] <-- Length[i, j-1, k]

else Length[i, j, k] <-- Length[i, j, k-1]

return Length[n,n,n]

The algorithm has a running time of O(n3).

3. Note that lcm(a, b) = ab/gcd(a,b). Therefore, one gcd calculation, one multiplication, and one division
is needed to calculate lcd(a, b). If n is the number of bits of a and b, the time for multiplication and
division is O(n2). The number of steps of the gcd algorithm is O(n), but each step involves a division
operation. Hence the total time is O(n3).

4. Roughly, the idea of the 2SAT algorithm is as follows. Pick any variable, say z. You don’t know
whether you should set z = true or z = false in order to satisfy the give formula F . But in the case
of a 2SAT formula, one can try both possiblities as follows. To try z = true, you set z = true. This
satisfies some clauses of F , which can be removed. In the clauses containing z̄, the other literal in the
clause is now “forced” to be true if there is to be any hope of satisfying the formula.



Continue to set the values of “forced” variables and remove clauses that are satisfied by the truth
assignment of that variable until either (i) there are no more “forced” variables, or (ii) a problem arises
where a variable is “forced” to be both true and false.

In case (i), you are left with a smaller 2SAT formula. If it is empty, you conclude that the formula is
satisfiable and halt. Otherwise, repeat the whole process on the smaller 2SAT formula.

In case (ii) you conclude that setting z = true doesn’t work. You repeat the process on F , this
time starting with setting z = false. If again case (ii) is reached, you conclude that it the formula is
not satisfiable since it it not possible to find a satisfying assignment either when z = true or when
z = false.


