
CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Solutions to Homework # 5

1. (a) Independent Set (IS) decision problem: given a graph G and a number k, does G have an
independent set of size at least k?

To show that IS is NP-Complete, we need to show that (i) IS is in NP and (ii) some NP-
Complete problem is polynomial-time reducible to IS; we will use CLIQUE for this purpose.

(i) IS is in NP: a verification algorithm for IS takes as input an instance (G, k) of IS and also
a set S of nodes of G. It checks that the set S has at least fk nodes and also that no pair
of nodes in S are connected. If so, the algorithm outputs ”yes” and otherwise the algorithm
outputs ”no.” This can be done in O(n2) time.

(ii) Reduction from CLIQUE to IS: Let (G, k) be an instance of CLIQUE. Construct an
instance (G′, k′) of IS as follows: let G′ be the graph with the same set of nodes as G; there
is an edge {i, j} in G′ if and only if the edge {i, j} is NOT in G. Also, let k ′ = k. Clearly G′

can be computed efficiently, given G.

Correctness: G has a clique of size k if and only if G′ has an independent set of size k, because
G′ is the complement of G.

2. (b) Let Decision-IS be the subroutine that solves the independent set decision problem. We
can use this subroutine to find an independent set of maximum size in G as follows. First,
run Decision-IS on inputs (G,n), (G,n−1) and so on until the Decision-IS first returns ”yes,”
say on input (G, k). This tells us that k is the size of the maximum independent set.

Next, let G′ be the graph obtained by removing node 1 and all of its neighbors from G, and
in addition, all edges from the neighbors of node 1 to other nodes that remain in G ′. Run
Decision-IS on input (G′, k). If the output is ”no,” it must be that there is a maximum
independent set, say I, containing node 1 in G. Set I cannot contain any of 1’s neighbors.
Therefore, the remaining nodes in I form an independent set the graph G′′ obtained from
G by removing node 1 and all of its neighbors from G, and in addition, all edges from the
neighbors of node 1 to other nodes that remain in G′′. To find the remaining nodes in I,
recursively find a maximum independent set of size k − 1 in G′′.

If the output is ”yes,” it must be the case that there is a maximum independent set of G that
does not contain node 1. Hence, recursively solve the problem of finding an independent set
of size k in G′.

Since only ONE of these possibilites (yes or no) occurs, there is only one recusive call de-
pending on whether node 1 is or is not in some maximum independent set. Hence the total
time to find a maximum independent set is polynomial.

(c) If each vertex of G has degree exactly 2, then each connected component of G is a ”ring.”
A maximum independent set can be obtained as follows. For each ring, visit the nodes on that
ring, starting at some arbitrary vertex and following the edges in the ring. Place the starting
node in the independent set. When a new node i is visited, place it in the independent set if
and only if neither of the nodes adjacent to it are in the independent set.



3. (a) No. Since Π1 is reducible to Π2, we know that the time needed to solve Π1 is at most
a polynomial time factor more than that needed to solve Π2. But even if Π1 is in P, it is
possible that exponential time is needed to solve Π2.

(b) Yes. This follows from the definition of reduction: We obtain an efficient algorithm for
Π1 by first reducing Π1 to Π2 and then running an efficient algorithm for Π2.

(c) No; it is possible for example that both Π1 and Π2 are in P and that P 6= NP.

(d) Yes, since all problems in NP are reducible to any NP-complete.

4. (a) The transformation can be done as follows: Let x be an instance of TSP. If x satisfies
the triangle inequality, x is simply mapped to x. Otherwise, let k be the max, over all triples
a, b, c of cost(a, c) − (cost(a, b) + cost(b, c)). Now, simply produce an instance, say y, of TSP
that satisfies the triangle inequality by keeping the set of cities the same and adding k to the
cost of every edge in the instance x.

Note that if cost′ is the cost function for the instance y, then cost′(a, c) = cost(a, c) + k and
cost′(a, b) + cost′(b, c) = cost(a, b) + cost(b, c) + 2k. Combining these identities with the fact
that cost(a, c)− (cost(a, b)+ cost(b, c)) ≤ k, it follows that cost′(a, c) ≤ cost′(a, b)+ cost′(b, c)
and thus the triangle inequality holds for the instance y.

Also, the cost of a tour of y is exactly the cost of the same tour in x plus nk. Therefore, the
optimal tours of x are the same as the optimal tours of y.

(b) The polynomial time transformation of part (a) does not “preserve approximability.” For
example, consider the simple instance x of TSP with just four cities, a, b, c, d. Suppose that
all costs are 0, except that cost(a, b) = T for any large value T . There are tours of total
cost 0 in x, for example, a, c, d, b, a. Using the transformation of part (a), the instance x is
mapped to an instance y in which the costs between all pairs of cities is T except the cost
between a and b is now 2T . In the instance y, the tour a, b, c, d, a has cost 6T which is just
T greater than the cheapest tour, which has cost 5T . But, mapped back to instance x, the
tour a, b, c, d, a is clearly not within a constant factor of the optimal, which is 0. problem.


