
CPSC-320 Intermediate Algorithm Design and Analysis Winter 2000

Solutions to Homework # 3

1. (b) To test if a graph is bipartite, we can try to construct a pair of sets V1, V2, such that all
edges of the graph connect an edge from V1 to V2. To record for each node whether it is in
V1, V2, or not yet assigned, we use an array A of size n, with one entry per node. Initially
each entry is 0, indicating that the node is not yet assigned to either V1 or V2. An entry of 1
or 2 indicates when a node is in V1 or V2, respectively.

To start our construction, pick any node, say v, and put it in V1 (that is, set A[v] = 1). All
of v’s neighbors must be in V2; put them there. All neighbors of nodes in V2 must be in V1,
and so on. Using either a depth first or breadth first approach, we can visit the nodes of the
graph, starting at v. When visiting node i, if its parent in the search was put in V1 then put
i in V2 and vice versa. If it ever occurs that two nodes assigned to the same set are connected
by an edge, we conclude that the graph is not bipartite.

This idea works for a connected graph. Note that if the graph is not connected, we need to
check separately that all connected components of the graph are bipartite.

Here is the same algorithm, expressed in pseudocode:

Bipartite(G)
begin

//using DFS, use a 1-d array A to keep track of which
//group a node is in.

initialize array A[] to 0 values.
output Search(v, 1), where v is some
starting node

end

Search(v, group number)
begin

vertex group[v]← group number

for each w adjacent to v do
if (vertex group[w] = 0) then

if group number = 1 then Search(w, 2)
else Search(w, 1)

else if (vertex group[w] = group number) then
return FAIL.

return SUCCESS.
end

This is a slight variant of DFS, which we proved in class was O(n + m), which is linear time.

(c) The correctness of the algorithm can be argued as follows.

First, suppose that the input graph is not bipartite. Then for any two sets V1 and V2, with
V = V1 ∪ V2, there will be at least one edge connecting two nodes in V1 or two nodes in V2.
Let V1 = {v | vertex group[v] = 1} and V2 = {v | vertex group[v] = 2}. Since there must
be an edge connecting two nodes in V1 or in V2, two adjacent nodes must be assigned the
same group number. The algorithm returns FAIL on the second call to the algorithm to these
nodes.

Now suppose that the input graph G is bipartite. Assume that the algorithm returns FAIL.
Then there must be adjacent nodes u and v which were assigned the same group number.
In order for two nodes to be assigned the same group number, they must be connected by
some path of even length, since the group number assignment alternates along each chain of
recursive calls. Hence the graph G must contain a cycle of odd length (since u and v are
connected by a path of even length and are adjacent). However, a bipartite graph cannot
contain a cycle of odd length, so we have a contradiction. Thus, the assumption that the
algorithm returns FAIL is false, i.e. the algorithm must return SUCCESS.

Pitfalls: it is important to notice that V1 and V2 are not part of the input to the problem.
Rather, the problem is: given a graph G, determine if there exists a way to divide the nodes
of G up into two sets, V1 and V2 so that all edges of the graph cross between V1 and V2.

The data structure needed here to store the group (V1 or V2) to which each node belongs is
very simple - an array with one entry per node.

2. The algorithm described is incorrect. Following is an example graph on which it fails. Can
you see why?

1 2

f <-- e <--- d

^ ^^ ^

| / | |

10| /1 |3 |-7

| / | |

|/ | |

a --> b ---> c

4 1

3. The following code is to be run on both machines. Array A is on machine P. Array B is on
machine Q.

Spot(A,n)

{

Sort(A)

Output(Nth(A,n,n,0)

}

Nth(A,n,Tot_N,Num_Dropped)

{

mid <- middle element of A

Send(A[mid],Q) /* Send median element */

Send(n,Q); /* Send # of elements in array to Q.*/

Receive(Mid2,Q) /* Receive median element from Q. */

Receive(n2,Q); /* Receive # of elements in B */

if (n1 == 1) || (n2 == 1)

goto BaseCase

else

Num_Dropped += mid;

Nth(A[mid..n],n-Mid -1, Tot_N, Num_Dropped);

BaseCase:

/* The base case is kind of tricky. I didn’t grade if the student had

all the cases right. What is known is that the regions in A and B

must contain the median. So a special case could be to transfer

a constant number of elements from A to B along with the associated

ranks. And then the median can be calculated.

*/

Proof of Correctness

At each iteration, elements from each array are eliminated that CAN NOT be the median.
This means that those portions of the arrays that remain always contain the median element.
This is true after each call. Therefore, at the time of the base case, we are guarenteed to have
the median element in one of the regions.

Message Analysis

At each step in the process, the algorithm reduces the size of the problem. by one half. The
base is some constant size of the problem.

T(n) = T(n/2) + O(1)

T(n) = O(ln n)

Alternate method 1

Some students chose to copy all the data from one machine to the other and then sort the
data on the machine that contained all the data.

Correctness

All the data appears on one machine, so correctness only depends on being able to select the
nth largest item.

Message Analysis

The number of messages passed is O(n).

Alternate Method 2

This method is similar to the original method. Instead of halving both arrays at each iteration,
this method only halves one array. Assume this array is A.

In a constant number of messages check that A[1] and A[n] are not the nth element.

Get_Nth(first, last, size of array)

{

while (size of array > constant number of elements)

{

Send the middle element to the other machine;

Other machine returns the rank of the sent element wrt to array B’s

elements

If middle + returned rank == n

done

else

if middle + returned rank > n // Eliminates the top half of array

// since none of those elements could

// possibly be the nth element.

Get_Nth(first, mid - 1 , mid - first)

else

Get_Nth(mid+1, last, last - mid) // The bottom half get eliminated.

}

//This is the base case.

Send the array elements that are still candidates, say A[i]..A[j] plus

A[i-1] and A[j+1] to the other machine. Along with the associated ranks.

}

On the OTHER machine:

With the possible candidates from A and the associated ranks, determine

if any of these observations are the nth observation. If none are the nth

observation, then the nth observation must be in B.

// This serves as a proof of correctness also. The following analysis

// will fail if the possible candidate portion of the array contains the

// nth element, because the A[j+1]st element doesn’t exist. To get around

// this, work with the jth element instead of the j+1st element.

We have the following

B[s] <= A[i-1] <= B[s+1] s + i - 1 < n

B[t] <= A[j+1] <= B[t+1] t + j + 1 > n

This implies that all B[e] <= B[s] can not be the nth element. We also

know that B[e] >= B[t+1] can not be the nth element. So we are left

with a region of B that contains the possible candidates for the

nth element.

So we have the following possible candidate lists.

A[i] ... A[j]

B[s+1] ... B[t]

Now just search both lists for the nth candidate

Message Analysis

To determine if either A[1] or A[n](and in the process if either B[1] or B[n]) is the nth
observation O(1) messages are required.

To reduce the problem to a base-case size:

T(n) = T(n/2) + O(1)

To communicate the base-case candidates from one machine to the other : O(1)

To communicate the result back to the other machine : O(1)

Overall running time is O(ln n)

4. A straightforward solution to this problem is simply to do a dfs or bfs from each node in
turn. On the search from node i, see if all nodes of the graph are reached. If so, there is an
arborescence rooted at node i. Since each search takes linear time and in the worst case n

searches are done, this algorithm takes time O(n(n + m).

There is a way to do better, however! Suppose that a dfs is done starting at some node s.
Consider the resulting dfs tree, call it T . Clearly, all nodes in T are reachable from s. But
all nodes in the tree may be reachable from other nodes in the tree, too. For example, if a
node x in the tree happens to have an edge back to the root s (this edge is NOT in the dfs
tree but IS in the input graph), then all nodes in the tree are also reachable from x.

Let’s call a node x in the dfs tree T rooted at s representative of T if all nodes in T are
reachable from x. It is not too hard to see how one could mark all of the representative nodes
in the tree in time linear in the size of the tree. When creating the tree in the first place, one
can mark all of the nodes in the tree that have an edge back to the root s. In another pass,
one can mark all nodes on any path of the tree from the root to a marked node. (One can
combine these two passes with a little care).

Why do we care about representative nodes? We know that ALL of the nodes in tree T , and
nothing else, can be reached from the representative nodes. If T has fewer than n nodes,
then it is necessary that there is some node in the remaining graph that has an edge to a
representative node, in order that the graph has an arborescence. Therefore, once the dfs
tree rooted at s is computed, it is useful to mark all nodes of T that are not representative
as “processed,” mark all other nodes of T as “representative,” and also retain a count of how
many nodes are in T .

We can use this information to advantage when starting a dfs from an unexplored node not
in T (i.e. a node that is not processed or not representative). Suppose that the next dfs
starts at node s’. We would like to know now many nodes are reachable from s’. During this
dfs from s’, there is no need to explore from nodes that are marked as “processed.” Suppose
that at some point in the dfs, a representative node N is visited, where N represents tree
T . Then, we can simply mark N and all nodes that represent T as “processed” (they are
no longer considered “representative”). Also, add the size of T to the total number of nodes
reachable from s′. (At this point, the nodes in tree T are all marked as “processed.”)

Here is a summary. Initially all nodes are marked as “unexplored.” At all times, a node
is marked as exactly one of “unexplored,” “visited,” “representative,” or “processed.” Once
it is “processed” it is not considered further, and for this reason the whole algorithm takes
linear time.

for i from 1 to n do

if i is unexplored then

if count-reachable(i) = n-1 then return ‘‘arborescence!’’

else

for each ‘‘visited’’ node v (i.e. node in the dfs tree rooted at i) do

if v is representative of the tree rooted at i then mark as such

else mark as ‘‘processed’’

count-reachable(i)

count <-- 1

for each node v adjacent to i do

if v is marked as ‘‘unexplored’’ then

mark v as ‘‘visited’’

add to dfs tree rooted at i

count <-- count + count-reachable(v)

elseif v is marked as processed then

do nothing (because it was previously counted as part of another tree)

elseif v is marked as representative of some tree T then

mark v and all other nodes that represent T as ‘‘processed’’

count <-- count + size(T)

return count

